scholarly journals DERIVATION OF THINNING REGIMES THROUGH USE OF A MODEL FOR BALSAM FIR IN QUEBEC

1964 ◽  
Vol 40 (3) ◽  
pp. 362-371 ◽  
Author(s):  
P. E. Vezina

A thinning regime was derived through use of a model developed to grow balsam fir (Abies balsamea (L.) Mill.) trees at any desired size between the limits set by normal and open stand densities. Interpolations were made between the normal number of trees in fully-stocked even-aged balsam fir stands and the number at which crowns of fully open-grown individual balsam fir just close at square spacing. The increase in the number of trees in a fully-stocked balsam fir stand of a given average d.b.h. being little influenced by site was used to establish the basis for the thinning regime. The simple regime prescribes a pre-commercial and two commercial thinnings, and a regeneration cutting when the stand reaches about 7 inches in d.b.h. From comparisons of the amount of growing stock of the hypothetical thinned stands with that of unmanaged fully-stocked stands, it would seem that a managed stand of balsam fir might carry a basal area per acre of 49, 58, and 75 per cent of the unmanaged stands at average d.b.h.'s of 3, 5 and 7 inches respectively.

1964 ◽  
Vol 40 (4) ◽  
pp. 474-481 ◽  
Author(s):  
P. E. Vezina

The concept of stand density in relation to thinning is examined and its development over the years is discussed. Present difficulties of objectively measuring stand density are recognized and probable future trends towards the development of better formulae to express stand density are outlined. Researchers should continue to collect information on interrelationships among stand variables. Certain merits accrue from description of stand density in terms of variables, such as crown closure, that can be measured with some precision from aerial photographs. Conversely, valid estimates of crown closure which are often difficult to obtain by means of devices from the ground, could be predicted from stand density. Three stand variables, used as expressions of stand density, were tested in crown closure simple regressions in even-aged, unmanaged stands of balsam fir (Abies balsamea (L.) Mill.) and jack pine (Pinus banksiana Lamb.). These are: total number of trees, number of trees 4 inches and up, and basal area per acre. The strongest relationship found was the one where crown closure is compared with basal area; it was stronger for jack pine than for balsam fir. This was explained by differences in tolerance among the two species. The significance of these relationships for the stand development, and the feasibility of using height-and diameter-based indices as measures of growing stock in studies of yield are discussed.


2019 ◽  
Vol 92 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Hugues Power ◽  
Patricia Raymond ◽  
Marcel Prévost ◽  
Vincent Roy ◽  
Frank Berninger

AbstractHarvesting practices in temperate mixedwoods of eastern North America have a history of diameter-limit cuts, which have often resulted in degraded residual stands. In this study, we examined the factors influencing stand basal area (BA) and tree diameter growth in previously high-graded mixedwood forests, to understand which stands are more likely to recover from high-grading. Over 15 years, we monitored tree growth, recruitment and stem quality of 532 sample plots that were located in high-graded stands of Quebec’s mixedwood forest. We found that diameter growth rates were positively correlated with precipitation-related variables for balsam fir (Abies balsamea) and for yellow birch (Betulla alleghaniensis) but opposing trends for temperature-related variables were found. Conversely to balsam fir, yellow birch growth was positively correlated to temperature variables. Our results also show that BA growth was greater for plots with a larger acceptable growing stock (AGS: trees with potential sawlog production) and that the increase in AGS was greater for plots with larger amount of conifer BA. These result highlights the importance to maintain a proportion of conifer trees in these mixed stands. Moreover, the significant effect of asymmetric competition in our study underscores the relevance of considering the spatial distribution when choosing crop trees.


2005 ◽  
Vol 35 (10) ◽  
pp. 2521-2527 ◽  
Author(s):  
François Potvin ◽  
Normand Bertrand ◽  
Jean Ferron

The snowshoe hare (Lepus americanus Erxleben) is an important prey for many predators in the boreal forest. In this biome, clear-cut landscapes are generally large and consist of aggregated cutting blocks separated by narrow forest strips (typically 60–100 m wide). To identify attributes of forest strips that are important for snowshoe hares, we measured the use of strips using track counts over two winters in six clear-cut landscapes (23–256 km2) in south-central Quebec. Surveys were conducted in 20 riparian strips (RS), 20 upland strips (US), and 15 control sites (CO) at the periphery of clear-cut landscapes. Overall, 392 signs of hare presence were recorded along 50 km of transects. Snowshoe hares were present in one-third of the strips surveyed and were five times less abundant in US and RS than in CO. The species avoided strip edges. Hares were more common in the wider strips (>100 m), in the strips adjacent to residual forest patches (≥25 ha), or in those having a denser shrub canopy, which is often associated with a greater basal area in balsam fir (Abies balsamea (L.) Mill.). To maintain snowshoe hare at moderate densities in large clear-cut landscapes, we suggest leaving uncut forest strips >100 m wide in areas having a good shrub cover with presence of balsam fir.


1996 ◽  
Vol 72 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Éric Bauce

Field rearing experiments of spruce budworm, Choristoneura fumiferana (Clem.), were conducted in conjunction with foliar chemical analyses, one and two years after a commercial thinning (removal of 25% stand basal area) in a 50-year-old balsam fir, Abies balsamea (L.) Mill., stand. The first year after thinning, spruce budworm larvae reared on the residual trees developed five days faster and removed 43% more foliage than those reared on control trees, but in the second year they developed two days faster and removed 37% more foliage. The increase in larval development rate was related to an increase in foliar soluble sugars while a reduction in foliar monoterpenes caused by the thinning apparently accounted for the greater amount of foliage ingested by the larvae. The first year after thinning, trees were more vulnerable to spruce budworm because there was no increase in foliage production and the trees were more heavily defoliated. However, in the second year trees were less vulnerable to the insect because there was an increase in foliage production that exceeded the increase in defoliation, hence a net gain in foliage. Results from this study showed that commercial thinning could reduce the vulnerability of balsam fir trees to spruce budworm if thinning is conducted two years prior to budworm outbreak, but the same silvicultural procedure could increase the vulnerability to the insect if it is conducted during an outbreak. Key words: spruce budworm, balsam fir, chemistry, thinning, defoliation


2003 ◽  
Vol 20 (4) ◽  
pp. 148-153 ◽  
Author(s):  
Dale S. Solomon ◽  
Lianjun Zhang ◽  
Thomas B. Brann ◽  
David S. Larrick

Abstract Cumulative and annual mortality of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L.) Mill.] were examined over a 10 yr period to follow the mortality patterns in unprotected spruce-fir forests in northern Maine. Different mortality patterns were determined based on stand composition classes and merchantability classes. In general, balsam fir was more vulnerable to budworm attack, and reached 92–100% basal area mortality and 84–97% stem density mortality 12 yr after the start of the outbreak. Red spruce, in contrast, had approximately 32–59% basal area mortality and 30–66% stem density mortality during the same time period. Balsam fir mortality started 1 to 2 yr before spruce, while spruce mortality continued 2 to 3 yr after fir mortality was completed. Higher mortality was found in smaller trees than sawtimber-sized trees. Stands with hardwood components (30–70% in basal area) had the lowest mortality rate for both species. Furthermore, Schnute growth function (Schnute 1981) was used to characterize the cumulative mortality trajectories after the defoliation of spruce and fir by stand composition classes. The models estimated the time when annual mortality achieved maximum, the cumulative mortality at that time, and the asymptotic mortality over a long time period after the start of the attack. The information can provide guidelines for predicting protection strategies and scheduling salvage harvests.


2021 ◽  
pp. 1-11
Author(s):  
Shannon White ◽  
Xinbiao Zhu ◽  
Fanrui Meng ◽  
Scott Taylor ◽  
Charles P.-A. Bourque

Moose (Alces alces L.) browsing in Gros Morne National Park has damaged its balsam fir (Abies balsamea (L.) Mill.)dominated forest. A forest estate model was used to evaluate (i) the impacts of moose browsing and woodcutting on forest succession and (ii) strategies of forest restoration through planting and moose population management. The simulation results show that under current heavy browsing pressure growing stock of balsam fir decreases by 38%, but the area of spruce (Picea mariana (Mill.) BSP and P. glauca (Moench) Voss) increases by 32% over a 100-year planning horizon, compared to that under light browsing scenario which is assumed to be similar to the forest outside the Park due to moose population management. Annual allowable cut (AAC) for the Park’s 19 400 ha domestic harvest area is estimated to be around 120 979 m3 in a light browsing scenario, 21% higher than the sustainable harvest level in a heavy browsing scenario. The model forecasts a 97% reforestation of the Park’s 7 194 ha disturbed area by planting in the heavy browsing scenario, leading to an increase in total forest growing stock by 22% and AAC by 12%. Integration of planting with moose population management could be a more efficient way of restoring forest under high browsing pressure in GMNP.


1985 ◽  
Vol 61 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Harold O. Batzer ◽  
Michael P. Popp

Plots in 24 spruce-fir stands in northeastern Minnesota studied throughout the period 1957 to 1962 at the time of a spruce budworm outbreak were remeasured in 1979. Composition of the overstory changed from an average of 79% of the basal area in host species before to 31% after the budworm outbreak. Twelve percent of the stands showed growth in nonhost species that more than offset the loss in balsam fir and white spruce. The understory was minimally stocked with balsam fir in two-thirds of the stands. Only 4% of the regeneration was spruce. Even so, some well-established white spruce seedlings were found in two-thirds of the stands. Red maple was the most abundant hardwood invader. Raspberry, hazel and mountain maple were the principal shrub species limiting balsam fir reproduction Shrubs were most abundant in stands where balsam fir mortality had exceeded 80%. Half of the stands had seedlings that originated both before and after the outbreak; 45% had seedlings that originated only after the outbreak; and 5% had seedlings that originated only before the outbreak. Stands having moderate mixture of nonhost species in the over-story prior to the budworm outbreak had the most balsam fir regeneration. This resulted from seed produced by surviving balsam fir trees after the outbreak. Key words: Choristoneura fumiferana, Abies balsamea, Balsam fir, spruce-fir shrubs


2015 ◽  
Vol 45 (12) ◽  
pp. 1739-1747 ◽  
Author(s):  
Kenneth Agbesi Anyomi ◽  
Jean-Claude Ruel

Boreal ecosystem functioning is largely controlled by disturbance dynamics. There have been efforts at adapting forest management approaches to emulate natural disturbance effects, as this is expected to maintain ecosystem resilience. In many instances, this involves resorting to partial cutting strategies that are likely to increase windthrow losses. The objective of this study was to determine the effects of alternative silvicultural practices on windthrow damage and how these effects vary with the scale of treatment. The study was conducted in the Quebec North Shore region (Canada), an area dominated by balsam fir (Abies balsamea (L.) Mill.) and accompanied by black spruce (Picea mariana (Mill) B.S.P.). Four different silvicultural treatments (overstory removal, heavy partial cutting, and two patterns of selection cutting) and control areas were implemented in 2004 and 2005. The experiment used a nested approach where treatment at the plot level was independent and yet nested within the block-level treatment. At the block level, treatments were applied over 10–20 ha units, leaving a small portion of the block for a smaller application of each treatment (plot scale, 2500 m2). Inventory was carried out before harvesting and monitoring was done yearly after harvesting, with the aim to better understand the plot- and block-level factors that drive windthrow damage levels and the effects of alternative silvicultural treatments. Results after 6–7 years show that basal area proportion windthrown differs substantially between treatments, as well as between treated sites and control sites. Windthrow levels were higher under heavy cuts relative to selection cuts and also increased with balsam fir proportion. Windthrow proportions were better correlated to block-level treatment than plot-level treatment, showing that the environment surrounding the treated plot can have an important effect on windthrow losses. Overall, the selection cutting system, particularly SC2, retains the most green-tree basal area and thus best meets the management objective of retaining old-growth attributes. A simple empirical model was calibrated that could aid in hazard rating.


2002 ◽  
Vol 80 (4) ◽  
pp. 370-377 ◽  
Author(s):  
David F Greene ◽  
Christian Messier ◽  
Hugo Asselin ◽  
Marie-Josée Fortin

Mean annual seed production is assumed to be proportional to basal area for canopy trees, but it is not known if subcanopy trees produce fewer seeds than expected (given their size) because of low light availability. Ovulate cone production was examined for balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss) in 1998 and for balsam fir in 2000 in western Quebec using subcanopy stems, near or far from forest edges, or (at one site) planted white spruce trees in fully open conditions. A very simple light model for transmission through mature trembling aspen (Populus tremuloides Michx.) crowns and through boles near forest edges was developed to account for the effect of light receipt on cone production. The enhanced light near forest edges (e.g., recent clearcuts) leads to about a doubling of cone production for subcanopy stems. The minimum subcanopy height for cone production far from an edge is about 10 m for balsam fir and 14 m for white spruce, with these minima decreasing near edges. By contrast, the minimum height for white spruce in a plantation (full light) is about 3 m. Accounting for light receipt leads to an increase in the explained variance.Key words: balsam fir, cone production, light model, regressions, subcanopy stems, white spruce.


2008 ◽  
Vol 84 (1) ◽  
pp. 60-69 ◽  
Author(s):  
David A MacLean ◽  
Allison R Andersen

Nine 0.04-ha plots were established in 1956 (age 35 years) in a balsam fir (Abies balsamea [L.] Mill.) stand in northwestern New Brunswick, Canada to determine the impact of an uncontrolled spruce budworm (Choristoneura fumiferana [Clem.]) outbreak on stand development. The plots were measured annually from 1956 to 1961 and at five-year intervals from 1965 to 1995. Moderate to severe defoliation occurred from 1951 to 1957 and again in 1975 to 1977, 1981, and 1986 to 1988. Budworm-caused mortality from 1956 to 1961 (age 35 to 40 years) varied considerably among plots, reducing volume by 35 to 113 m3/ha (34%-84%), and resulting in a wide range of post-outbreak plot densities. Plots were grouped into three post-budworm outbreak (1965, age 45 years) basal area classes, of ≤ 20 m2/ha, 21 to 27 m2/ha, and ≥ 28 m2/ha, to examine stand recovery. Recovery of volume up to age 60 years ranged from 72 to 132 m3/ha, in the lowest to highest basal area classes, respectively. From age 60 to 75 years, five plots declined in volume due to the onset of stand break-up and four plots increased in volume. By age 60 years, survivor growth was greatest in the high basal area plots, ranging from 6.2 to 9.0 m3/ha/yr in seven plots, versus 2.6 to 3.2 m3/ha/yr in two low basal area plots. From age 60 to 75 years, survivor growth averaged only 2.8 to 5.2 m3/ha/yr, and the stand exhibited major decline, with 63%, 74%, and 78% mortality of fir ≤ 15 cm DBH in the low to high basal area plots, respectively. Budworm-caused "thinning" in the 1950s largely determined subsequent stand development and the rate of stand break-up 25 to 35 years later. The timing and rate of natural stand decline was strongly influenced by post-outbreak stand density. Key words: budworm-caused mortality, stand structure, stand development, growth, mortality, stand density


Sign in / Sign up

Export Citation Format

Share Document