scholarly journals Mitochondrial P2X7 receptor localization modulates energy metabolism enhancing physical performance

Function ◽  
2021 ◽  
Author(s):  
Alba Clara Sarti ◽  
Valentina Vultaggio-Poma ◽  
Simonetta Falzoni ◽  
Sonia Missiroli ◽  
Anna Lisa Giuliani ◽  
...  

Abstract Basal expression of the P2X7 receptor (P2X7R) improves mitochondrial metabolism, ATP synthesis and overall fitness of immune and non-immune cells. We investigated P2X7R contribution to energy metabolism and subcellular localization in fibroblasts (mouse embryo fibroblasts and HEK293 human fibroblasts), mouse microglia (primary brain microglia and the N13 microglia cell line), and heart tissue. The P2X7R localizes to mitochondria, and its lack a) decreases basal respiratory rate, ATP-coupled respiration, maximal uncoupled respiration, resting mitochondrial potential, mitochondrial matrix Ca2+ level, b) modifies expression pattern of oxidative phosphorylation (OxPhos) enzymes, and c) severely affects cardiac performance. Hearts from P2rx7-deleted versus WT mice are larger, heart mitochondria smaller, and stroke volume (SV), ejection fraction (EF), fractional shortening (FS) and cardiac output (CO), are significantly decreased. Accordingly, physical fitness of P2X7R-null mice is severely reduced. Thus, the P2X7R is a key modulator of mitochondrial energy metabolism and a determinant of physical fitness.

2020 ◽  
Author(s):  
Alba Clara Sarti ◽  
Valentina Vultaggio-Poma ◽  
Simonetta Falzoni ◽  
Sonia Missiroli ◽  
Anna Lisa Giuliani ◽  
...  

AbstractBasal expression of the P2X7 receptor (P2X7R) improves mitochondrial metabolism, ATP synthesis and overall fitness of immune and non-immune cells. We investigated P2X7R contribution to energy metabolism and subcellular localization in fibroblasts (mouse embryo fibroblasts and HEK293 human fibroblasts), mouse microglia (primary brain microglia and the N13 microglia cell line), and heart tissue. The P2X7R localizes to mitochondria, and its lack a) decreases basal respiratory rate, ATP-coupled respiration, maximal uncoupled respiration, resting mitochondrial potential, mitochondrial matrix Ca2+ level, b) modifies expression pattern of oxidative phosphorylation (OxPhos) enzymes, and c) severely affects cardiac performance. Hearts from P2rx7-deleted versus WT mice are larger, heart mitochondria smaller, and stroke volume (SV), ejection fraction (EF), fractional shortening (FS) and cardiac output (CO), are significantly decreased. Accordingly, physical fitness of P2X7R-null mice is severely reduced. Thus, the P2X7R is a key modulator of mitochondrial energy metabolism and a determinant of physical fitness.


2016 ◽  
Vol 17 (13) ◽  
pp. 1527-1534 ◽  
Author(s):  
Bárbara J. Henriques ◽  
Tânia G. Lucas ◽  
Cláudio M. Gomes

2020 ◽  
Vol 29 (7) ◽  
pp. 616-622 ◽  
Author(s):  
Attila Oláh ◽  
Majid Alam ◽  
Jérémy Chéret ◽  
Nikolett Gréta Kis ◽  
Zoltán Hegyi ◽  
...  

2017 ◽  
Vol 8 (12) ◽  
pp. 4657-4667 ◽  
Author(s):  
Ge Song ◽  
Zhigang Liu ◽  
Luanfeng Wang ◽  
Renjie Shi ◽  
Chuanqi Chu ◽  
...  

Lipoic acid (LA) suppressed acrylamide (ACR)-induced inflammation, redox status disturbance, autophagy, and apoptosis mediated by mitochondria in the SH-SY5Y cells.


1992 ◽  
Vol 12 (5) ◽  
pp. 381-386 ◽  
Author(s):  
F. Buttgereit ◽  
M. D. Brand ◽  
M. Müller

The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.


2019 ◽  
Vol 364 ◽  
pp. 29-44 ◽  
Author(s):  
Hye-Youn Cho ◽  
Laura Miller-DeGraff ◽  
Terry Blankenship-Paris ◽  
Xuting Wang ◽  
Douglas A. Bell ◽  
...  

Neonatology ◽  
2002 ◽  
Vol 81 (4) ◽  
pp. 229-235 ◽  
Author(s):  
László Wenchich ◽  
Jiří Zeman ◽  
Hana Hansíková ◽  
Richard Plavka ◽  
Wolfgang Sperl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document