scholarly journals Met is required for oligodendrocyte progenitor cell migration in Danio rerio

Author(s):  
Authors: Maria F Ali ◽  
Andrew J Latimer ◽  
Yinxue Wang ◽  
Leah Hogenmiller ◽  
Laura Fontenas ◽  
...  

Abstract During vertebrate central nervous system development, most oligodendrocyte progenitor cells (OPCs) are specified in the ventral spinal cord and must migrate throughout the neural tube until they become evenly distributed, occupying non-overlapping domains. While this process of developmental OPC migration is well characterized, the nature of the molecular mediators that govern it remain largely unknown. Here, using zebrafish as a model, we demonstrate that Met signaling is required for initial developmental migration of OPCs, and, using cell-specific knock-down of Met signaling, show that Met acts cell-autonomously in OPCs. Taken together, these findings demonstrate in vivo, the role of Met signaling in OPC migration and provide new insight into how OPC migration is regulated during development.

2021 ◽  
Author(s):  
Maria F Ali ◽  
Andrew J Latimer ◽  
Yinxue Wang ◽  
Leah Hogenmiller ◽  
Laura Fontenas ◽  
...  

During vertebrate central nervous system development, most oligodendrocyte progenitor cells (OPCs) are specified in the ventral spinal cord and must migrate throughout the neural tube until they become evenly distributed, occupying non-overlapping domains. While this process of developmental OPC migration is well characterized, the nature of the molecular mediators that govern it remain largely unknown. Here, using zebrafish as a model, we demonstrate that Met signaling is required for initial developmental migration of OPCs, and, using cell-specific knock-down of Met signaling, show that Met acts cell-autonomously in OPCs. Taken together, these findings demonstrate in vivo, the role of Met signaling in OPC migration and provide new insight into how OPC migration is regulated during development.


2020 ◽  
Vol 64 (10-11-12) ◽  
pp. 479-484
Author(s):  
Carolina Fiallos-Oliveros ◽  
Toshio Ohshima

Dihydropyrimidinase-like family proteins (Dpysls) are relevant in several processes during nervous system development; among others, they are involved in axonal growth and cell migration. Dpysl2 (CRMP2) is the most studied member of this family; however, its role in vivo is still being investigated. Our previous studies in zebrafish showed the requirement of Dpysl2 for the proper positioning of caudal primary motor neurons and Rohon-Beard neurons in the spinal cord.In the present study, we show that Dpysl2 is necessary for the proper migration of facial branchiomotor neurons during early development in zebrafish. We generated a dpysl2 knock-out (KO) zebrafish mutant line and used different types of antisense morpholino oligonucleotides (AMO) to analyze the role of Dpysl2 in this process. Both dpysl2 KO mutants and morphants exhibited abnormalities in the migration of these neurons from rhombomers (r) 4 and 5 to 6 and 7. The facial branchiomotor neurons that were expected to be at r6 were still located at r4 and r5 hours after the migration process should have been completed. In addition, mutant phenotypes were rescued by injecting dpysl2 mRNA into the KO embryos. These results indicate that Dpysl2 is involved in the proper migration of facial branchiomotor neurons in developing zebrafish embryos.


2006 ◽  
Vol 17 (3) ◽  
pp. 1273-1285 ◽  
Author(s):  
Takashi Nishimura ◽  
Tomoya Yamaguchi ◽  
Akinori Tokunaga ◽  
Akitoshi Hara ◽  
Tomonari Hamaguchi ◽  
...  

Numb has been implicated in cortical neurogenesis during nervous system development, as a result of its asymmetric partitioning and antagonizing Notch signaling. Recent studies have revealed that Numb functions in clathrin-dependent endocytosis by binding to the AP-2 complex. Numb is also expressed in postmitotic neurons and plays a role in axonal growth. However, the functions of Numb in later stages of neuronal development remain unknown. Here, we report that Numb specifically localizes to dendritic spines in cultured hippocampal neurons and is implicated in dendritic spine morphogenesis, partially through the direct interaction with intersectin, a Cdc42 guanine nucleotide exchange factor (GEF). Intersectin functions as a multidomain adaptor for proteins involved in endocytosis and cytoskeletal regulation. Numb enhanced the GEF activity of intersectin toward Cdc42 in vivo. Expression of Numb or intersectin caused the elongation of spine neck, whereas knockdown of Numb and Numb-like decreased the protrusion density and its length. Furthermore, Numb formed a complex with EphB2 receptor-type tyrosine kinase and NMDA-type glutamate receptors. Knockdown of Numb suppressed the ephrin-B1-induced spine development and maturation. These results highlight a role of Numb for dendritic spine development and synaptic functions with intersectin and EphB2.


2016 ◽  
Vol 113 (34) ◽  
pp. E4985-E4994 ◽  
Author(s):  
Michael Winding ◽  
Michael T. Kelliher ◽  
Wen Lu ◽  
Jill Wildonger ◽  
Vladimir I. Gelfand

The plus-end microtubule (MT) motor kinesin-1 is essential for normal development, with key roles in the nervous system. Kinesin-1 drives axonal transport of membrane cargoes to fulfill the metabolic needs of neurons and maintain synapses. We have previously demonstrated that kinesin-1, in addition to its well-established role in organelle transport, can drive MT–MT sliding by transporting “cargo” MTs along “track” MTs, resulting in dramatic cell shape changes. The mechanism and physiological relevance of this MT sliding are unclear. In addition to its motor domain, kinesin-1 contains a second MT-binding site, located at the C terminus of the heavy chain. Here, we mutated this C-terminal MT-binding site such that the ability of kinesin-1 to slide MTs is significantly compromised, whereas cargo transport is unaffected. We introduced this mutation into the genomic locus of kinesin-1 heavy chain (KHC), generating the KhcmutA allele. KhcmutA neurons displayed significant MT sliding defects while maintaining normal transport of many cargoes. Using this mutant, we demonstrated that MT sliding is required for axon and dendrite outgrowth in vivo. Consistent with these results, KhcmutA flies displayed severe locomotion and viability defects. To test the role of MT sliding further, we engineered a chimeric motor that actively slides MTs but cannot transport organelles. Activation of MT sliding in KhcmutA neurons using this chimeric motor rescued axon outgrowth in cultured neurons and in vivo, firmly establishing the role of sliding in axon outgrowth. These results demonstrate that MT sliding by kinesin-1 is an essential biological phenomenon required for neuronal morphogenesis and normal nervous system development.


1992 ◽  
Vol 67 (01) ◽  
pp. 111-116 ◽  
Author(s):  
Marcel Levi ◽  
Jan Paul de Boer ◽  
Dorina Roem ◽  
Jan Wouter ten Cate ◽  
C Erik Hack

SummaryInfusion of desamino-d-arginine vasopressin (DDAVP) results in an increase in plasma plasminogen activator activity. Whether this increase results in the generation of plasmin in vivo has never been established.A novel sensitive radioimmunoassay (RIA) for the measurement of the complex between plasmin and its main inhibitor α2 antiplasmin (PAP complex) was developed using monoclonal antibodies preferentially reacting with complexed and inactivated α2-antiplasmin and monoclonal antibodies against plasmin. The assay was validated in healthy volunteers and in patients with an activated fibrinolytic system.Infusion of DDAVP in a randomized placebo controlled crossover study resulted in all volunteers in a 6.6-fold increase in PAP complex, which was maximal between 15 and 30 min after the start of the infusion. Hereafter, plasma levels of PAP complex decreased with an apparent half-life of disappearance of about 120 min. Infusion of DDAVP did not induce generation of thrombin, as measured by plasma levels of prothrombin fragment F1+2 and thrombin-antithrombin III (TAT) complex.We conclude that the increase in plasminogen activator activity upon the infusion of DDAVP results in the in vivo generation of plasmin, in the absence of coagulation activation. Studying the DDAVP induced increase in PAP complex of patients with thromboembolic disease and a defective plasminogen activator response upon DDAVP may provide more insight into the role of the fibrinolytic system in the pathogenesis of thrombosis.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 836
Author(s):  
Ana Quelle-Regaldie ◽  
Daniel Sobrido-Cameán ◽  
Antón Barreiro-Iglesias ◽  
María Jesús Sobrido ◽  
Laura Sánchez

Autosomal recessive ataxias are much less well studied than autosomal dominant ataxias and there are no clearly defined systems to classify them. Autosomal recessive ataxias, which are characterized by neuronal and multisystemic features, have significant overlapping symptoms with other complex multisystemic recessive disorders. The generation of animal models of neurodegenerative disorders increases our knowledge of their cellular and molecular mechanisms and helps in the search for new therapies. Among animal models, the zebrafish, which shares 70% of its genome with humans, offer the advantages of being small in size and demonstrating rapid development, making them optimal for high throughput drug and genetic screening. Furthermore, embryo and larval transparency allows to visualize cellular processes and central nervous system development in vivo. In this review, we discuss the contributions of zebrafish models to the study of autosomal recessive ataxias characteristic phenotypes, behavior, and gene function, in addition to commenting on possible treatments found in these models. Most of the zebrafish models generated to date recapitulate the main features of recessive ataxias.


2003 ◽  
Vol 77 (20) ◽  
pp. 11274-11278 ◽  
Author(s):  
B. W. A. van der Strate ◽  
J. L. Hillebrands ◽  
S. S. Lycklama à Nijeholt ◽  
L. Beljaars ◽  
C. A. Bruggeman ◽  
...  

ABSTRACT The role of leukocytes in the in vivo dissemination of cytomegalovirus was studied in this experiment. Rat cytomegalovirus (RCMV) could be transferred to rat granulocytes and monocytes by cocultivation with RCMV-infected fibroblasts in vitro. Intravenous injection of purified infected granulocytes or monocytes resulted in a systemic infection in rats, indicating that our model is a powerful tool to gain further insight into CMV dissemination and the development of new antivirals.


2002 ◽  
Vol 13 (2) ◽  
pp. 698-710 ◽  
Author(s):  
Sylvie Ozon ◽  
Antoine Guichet ◽  
Olivier Gavet ◽  
Siegfried Roth ◽  
André Sobel

Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins inDrosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin andstathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation ofDrosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophilagene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.


2017 ◽  
Vol 40 (10) ◽  
pp. 563-574 ◽  
Author(s):  
Stefania Marconi ◽  
Ettore Lanzarone ◽  
Hector De Beaufort ◽  
Michele Conti ◽  
Santi Trimarchi ◽  
...  

Introduction Predicting aortic growth in acute type B dissection is fundamental in planning interventions. Several factors are considered to be growth predictors in the literature and, among them, size and location of entry tears have been recognized to particularly influence the false lumen pressure. In this study, we develop an in vitro setting to analyze the actual impact of size and location of the entry tears on false lumen pressure, in the absence of other confounding factors such as the deformability of the aortic wall. Methods We formalize some indexes that synthetically describe the false lumen pressure with respect to the true lumen pressure. Then, we experimentally derive their values in several configurations of the in vitro setting, and we look for trends in the indexes with respect to the size and location of entry tears. Results: Results show that the tears have a relevant impact on the false lumen pressure, but that their size and location alone are not enough to explain the phenomena observed in vivo. Conclusions To predict the behavior of acute type B dissection, we therefore recommend not limiting to size and location, as many effects may derive from the interactions between these parameters and other patient characteristics.


Sign in / Sign up

Export Citation Format

Share Document