scholarly journals Molecular Evolution of the Glutathione S-Transferase Family in the Bemisia tabaci Species Complex

2020 ◽  
Vol 12 (2) ◽  
pp. 3857-3872 ◽  
Author(s):  
Ofer Aidlin Harari ◽  
Diego Santos-Garcia ◽  
Mirit Musseri ◽  
Pnina Moshitzky ◽  
Mitulkumar Patel ◽  
...  

Abstract The glutathione S-transferase (GST) family plays an important role in the adaptation of herbivorous insects to new host plants and other environmental constrains. The family codes for enzymes that neutralize reactive oxygen species and phytotoxins through the conjugation of reduced glutathione. Here, we studied the molecular evolution of the GST family in Bemisia tabaci, a complex of >35 sibling species, differing in their geographic and host ranges. We tested if some enzymes evolved different functionality, by comparing their sequences in six species, representing five of the six major genetic clades in the complex. Comparisons of the nonsynonymous to synonymous substitution ratios detected positive selection events in 11 codons of 5 cytosolic GSTs. Ten of them are located in the periphery of the GST dimer, suggesting a putative involvement in interactions with other proteins. Modeling the tertiary structure of orthologous enzymes, identified additional 19 mutations in 9 GSTs, likely affecting the enzymes’ functionality. Most of the mutation events were found in the environmentally responsive classes Delta and Sigma, indicating a slightly different delta/sigma tool box in each species. At a broader genomic perspective, our analyses indicated a significant expansion of the Delta GST class in B. tabaci and a general association between the diet breadth of hemipteran species and their total number of GST genes. We raise the possibility that at least some of the identified changes improve the fitness of the B. tabaci species carrying them, leading to their better adaptation to specific environments.

Author(s):  
Solomon T C Chak ◽  
Juan Antonio Baeza ◽  
Phillip Barden

Abstract Eusociality is a highly conspicuous and ecologically impactful behavioral syndrome that has evolved independently across multiple animal lineages. So far, comparative genomic analyses of advanced sociality have been mostly limited to insects. Here, we study the only clade of animals known to exhibit eusociality in the marine realm—lineages of socially diverse snapping shrimps in the genus Synalpheus. To investigate the molecular impact of sociality, we assembled the mitochondrial genomes of eight Synalpheus species that represent three independent origins of eusociality and analyzed patterns of molecular evolution in protein-coding genes. Synonymous substitution rates are lower and potential signals of relaxed purifying selection are higher in eusocial relative to noneusocial taxa. Our results suggest that mitochondrial genome evolution was shaped by eusociality-linked traits—extended generation times and reduced effective population sizes that are hallmarks of advanced animal societies. This is the first direct evidence of eusociality impacting genome evolution in marine taxa. Our results also strongly support the idea that eusociality can shape genome evolution through profound changes in life history and demography.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7690 ◽  
Author(s):  
Ting Xie ◽  
Ling Jiang ◽  
Jianshe Li ◽  
Bo Hong ◽  
Xinpu Wang ◽  
...  

Background Lecanicillium lecanii is an entomopathogenic fungi, which was isolated from insects suffering from disease. Now, it is an effective bio-control resource that can control agricultural pests such as whitefly and aphids. There are many studies on the control of various agricultural pests by L. lecanii, but no report on its control of Bemisia tabaci biotype-Q exists. In this work, we studied the susceptibility of B. tabaci Q-biotype (from Ningxia, China) to L. lecanii JMC-01 in terms of nymph mortality and the changes in detoxifying protective enzymes activities. Methods B. tabaci nymphs were exposed to L. lecanii JMC-01 conidia by immersion with the host culture. Mortality was assessed daily for all nymph stages. The detoxifying and protective enzyme activity changes, weight changes, and fat, and water contents of the nymphs were determined spectrophotometrically. Results All instars of B. tabaci died after being infested with 1 × 108 conidia/mL. The 2nd-instar nymphs were the most susceptible, followed by the 3rd-instar nymphs. The corrected cumulative mortality of the 2nd- and 3rd-instar nymphs was 82.22% and 75.55%, respectively. The levels of detoxifying and protective enzymes initially increased and then decreased. The highest activities of carboxylesterase, acetylcholinesterase, peroxidase, and catalase occurred on the 3rd day, reaching 10.5, 0.32, 20, and 6.3 U/mg prot, respectively. These levels were 2.2-, 4.3-, 2.4-, and 1.4-fold the control levels, respectively. The highest activities of glutathione-S transferase and superoxide dismutase on the 2nd day were, respectively, 64 and 43.5 U/mg prot. These levels were, respectively, 2.7 and 1.1-fold that of the control level. The water and fat content in the infected B. tabaci nymphs decreased and differed significantly from the control levels. The weight increased continuously in the first 24 h, decreasing thereafter. At 72 h, the infestation level was about 0.78-fold that of the control level. Conclusions The studied L. lecanii JMC-01 strain is pathogenic to the B. tabaci Q-biotype. This strain interferes with the normal functioning of detoxifying and protective enzymes, and is also involved in the disruption of normal physiological metabolism in B. tabaci.


2007 ◽  
Vol 24 (8) ◽  
pp. 1769-1782 ◽  
Author(s):  
S. C. Choi ◽  
A. Hobolth ◽  
D. M. Robinson ◽  
H. Kishino ◽  
J. L. Thorne

2013 ◽  
Vol 170 (14) ◽  
pp. 1277-1284 ◽  
Author(s):  
Mohammad Kazem Rezaei ◽  
Zahra-Sadat Shobbar ◽  
Maryam Shahbazi ◽  
Raha Abedini ◽  
Sajjad Zare

Sign in / Sign up

Export Citation Format

Share Document