scholarly journals CHROMOSOMAL SEQUENCES AND INTERISLAND COLONIZATIONS IN HAWAIIAN DROSOPHILA

Genetics ◽  
1983 ◽  
Vol 103 (3) ◽  
pp. 465-482
Author(s):  
Hampton L Carson

ABSTRACT Of 103 picture-winged Drosophila species endemic to the high Hawaiian islands, all but three are endemic to single islands or island complexes. They are presumed to have evolved in situ on each island. The banding pattern sequences of the five major polytene chromosomes of these species have been mapped to a single set of Standard sequences. Sequential variation among these chromosomes is due to 213 paracentric inversions. An atlas of their break points is provided. Geographical, morphological and behavioral data may be used to supplement the cytological information in tracing ancestry. Starting at the newer end of the archipelago, the 26 species of the Island of Hawaii (less than 700,000 years old) are inferred to have been derived from 19 founders, 15 from the Maui complex, three from Oahu and one from Kauai. The existence of 40 Maui complex species is explicable as resulting from 12 founders, ten from Oahu and two from Kauai. The 29 Oahu species can be explained by 12 founder events, five from Kauai and seven from Maui complex (summary in Figure 5). Although the ancestry of two Kauai species can be traced to newer islands, the ten remaining ones on this island (age about 5.6 million years) are apparently ancient elements in the fauna, relating ultimately to Palearctic continental sources.

Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 281-295
Author(s):  
José María ◽  
Carmen Segarra ◽  
Alfredo Ruiz

Thirty-three DNA clones containing protein-coding genes have been used for in situ hybridization to the polytene chromosomes of two Drosophila repleta group species, D. repleta and D. buzzatii. Twenty-six clones gave positive results allowing the precise localization of 26 genes and the tentative identification of another nine. The results were fully consistent with the currently accepted chromosomal homologies and in no case was evidence for reciprocal translocations or pericentric inversions found. Most of the genes mapped to chromosomes 2 and 4 that are homologous, respectively, to chromosome arms 3R and 3L of D. melanogaster (Muller's elements E and D). The comparison of the molecular organization of these two elements between D. melanogaster and D. repleta (two species that belong to different subgenera and diverged some 62 million years ago) showed an extensive reorganization via paracentric inversions. Using a maximum likelihood procedure, we estimated that 130 paracentric inversions have become fixed in element E after the divergence of the two lineages. Therefore, the evolution rate for element E is approximately one inversion per million years. This value is comparable to previous estimates of the rate of evolution of chromosome X and yields an estimate of 4.5 inversions per million years for the whole Drosophila genome.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 647-656
Author(s):  
William B Eggleston ◽  
Nac R Rim ◽  
Johng K Lim

Abstract The structure of chromosomal inversions mediated by hobo transposable elements in the Uc-1 X chromosome was investigated using cytogenetic and molecular methods. Uc-1 contains a phenotypically silent hobo element inserted in an intron of the Notch locus. Cytological screening identified six independent Notch mutations resulting from chromosomal inversions with one breakpoint at cytological position 3C7, the location of Notch. In situ hybridization to salivary gland polytene chromosomes determined that both ends of each inversion contained hobo and Notch sequences. Southern blot analyses showed that both breakpoints in each inversion had hobo-Notch junction fragments indistinguishable in structure from those present in the Uc-1 X chromosome prior to the rearrangements. Polymerase chain reaction amplification of the 12 hobo-Notch junction fragments in the six inversions, followed by DNA sequence analysis, determined that each was identical to one of the two hobo-Notch junctions present in Uc-1. These results are consistent with a model in which hobo-mediated inversions result from homologous pairing and recombination between a pair of hobo elements in reverse orientation.


1997 ◽  
Vol 273 (1) ◽  
pp. C257-C265 ◽  
Author(s):  
A. Ruknudin ◽  
C. Valdivia ◽  
P. Kofuji ◽  
W. J. Lederer ◽  
D. H. Schulze

cDNAs for the Na+/Ca2+ exchanger from Drosophila melanogaster (Dmel/Nck) have been cloned by homology screening using the human heart Na+/Ca2+ exchanger cDNA. The overall deduced protein structure for Dmel/Nck is similar to that of mammalian Na+/Ca2+ exchanger genes NCX1 and NCX2, having six hydrophobic regions in the amino terminus separated from six at the carboxy-terminal end by a large intracellular loop. Sequence comparison of the Drosophila exchanger cDNAs with NCX1 and NCX2 Na+/Ca2+ exchangers are approximately 46% identical at the deduced amino acid level. Consensus phosphorylation sites for both protein kinase C and protein kinase A are present on the intracellular loop region of the Dmel/Nck. Alternative splicing for the Dmel/Nck gene is suggested in the same intracellular loop region as demonstrated for NCX1. Functionally, the Drosophila Na+/ Ca2+ exchanger expressed in oocytes differs from expressed mammalian NCX1 with regard to Ca2+ transport in Ca2+/ Ca2+ exchange and the effect of monovalent-dependent Ca2+/ Ca2+ exchange. The Dmel/Nck gene maps to chromosome 3 (93A-B) using in situ hybridization to polytene chromosomes, the same position as the Na(+)-K(+)-ATPase, a related transporter. We conclude that, although extracellular Na+ concentration-dependent Ca2+ transport is subserved by both human and Drosophila Na+/Ca2+ exchangers, there are clear and important differences in the transporters, which should be useful in deducing how the Na+/Ca2+ exchanger protein function depends on its structure.


Genome ◽  
1994 ◽  
Vol 37 (6) ◽  
pp. 1018-1021 ◽  
Author(s):  
M. Nenno ◽  
K. Schumann ◽  
W. Nagl

This is the first report of fluorescence in situ hybridization (FISH) on plant polytene chromosomes. Different protease pretreatments have been tested to improve fluorescence in situ hybridization FISH on polytene chromosomes of a plant, Phaseolus coccineus, with the aim to enable the detection of low-copy genes. The structural preservation of the chromosomes and the distinctness of the FISH signals were comparatively analysed with a probe for the ribosomal RNA genes after digestion with pepsin and trypsin. The pepsin pretreatment resulted in a general loosening of chromatin with good conservation of chromosome morphology and an increased number and density of signal points. The six nucleolus organizers exhibited significant differences in condensation. The pretreatment with pepsin enabled the detection of the low-copy genes encoding the seed storage protein phaseolin.Key words: plant, Leguminosae, ribosomal RNA genes, seed storage protein genes, protease.


1995 ◽  
Vol 131 (2) ◽  
pp. 279-295 ◽  
Author(s):  
Y Urata ◽  
S J Parmelee ◽  
D A Agard ◽  
J W Sedat

We have analyzed the three-dimensional structural details of Drosophila melanogaster polytene chromosome bands and interbands using three-dimensional light microscopy and a novel method of sample preparation that does not involve flattening or stretching the chromosomes. Bands have been visualized in unfixed chromosomes stained with the DNA specific dye 4,6-Diamidino-2-phenylindole (DAPI). Interbands have been visualized using fixed chromosomes that have been immunostained with an antibody to RNA polymerase II. Additionally, these structures have been analyzed using in situ hybridization with probes from specific genetic loci (Notch and white). Bands are seen to be composed of approximately 36 substructural features that measure 0.2-0.4 micron in diameter. We suggest that these substructural features are in fact longitudinal fibers made up of bundles of chromatids. Band shape can be a reproducible characteristic of a particular band and is dependent on the spatial relationship of these bundles, varying from bands with a uniform distribution of bundles to bands with a peripheral concentration of chromatin. Interbands are composed of bundles of chromatids of a similar size and number as those seen in the bands. The distribution of bundles is similar between a band and the neighboring interband, implying that there is a long range organization to the DNA that includes both the coding and the noncoding portions of genes. Finally, we note that the polytene chromosome has a circular shape when viewed in cross section, whether there are one or two homologs present.


Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 744-751 ◽  
Author(s):  
Anna Zambetaki ◽  
Antigone Zacharopoulou ◽  
Zacharias G. Scouras ◽  
Penelope Mavragani-Tsipidou

Blood ◽  
1996 ◽  
Vol 88 (6) ◽  
pp. 2259-2266 ◽  
Author(s):  
J Fairman ◽  
RY Wang ◽  
H Liang ◽  
L Zhao ◽  
D Saltman ◽  
...  

Acquired partial and complete deletions of chromosome 5 (5q-, -5) are common cytogenetic anomalies associated with myelodysplasia (MDS) and acute myeloid leukemia (AML). A critical region of consistent loss at 5q31.1 (in > 90% of cases) has led us and others to postulate the presence of a key negative regulator(s) of leukemogenesis. Although the interstitial deletion limits vary among patients, del(5) (q13q33) and del(5)(q13q35) constitute major subsets. Furthermore, it is not rare to encounter deletions, translocations, or paracentric inversions involving 5q11 to 5q13, which indicates inactivation or disruption of important gene(s) at that locus. In this report, we have localized a novel locus at 5q13.1 to a 2.0-Mb interval between the anonymous markers D5S672 and GATA-P1804. This locus resided within the region of loss in 12 of 27 patients with anomalies of chromosome 5; one of these cases had apparent retention of both alleles of all the telomeric loci. Fluorescence in situ hybridization (FISH) studies demonstrate that the AML cell line ML3 is disrupted at 5q13.1 by a translocation involving chromosome 3, with apparent retention of the entire chromosome 5 sequence. Our results suggest that this novel proximal locus encodes a critical gene that may be deleted or disrupted in a subset of MDS/AML patients with chromosome 5 anomalies.


Sign in / Sign up

Export Citation Format

Share Document