scholarly journals CYTOGENETIC ANALYSIS OF THE cSOD MICROREGION IN DROSOPHILA MELANOGASTER

Genetics ◽  
1986 ◽  
Vol 112 (2) ◽  
pp. 205-215
Author(s):  
Shelagh D Campbell ◽  
Arthur J Hilliker ◽  
John P Phillips

ABSTRACT This report describes the genetic organization of a euchromatic region on the third chromosome of Drosophila melanogaster extending cytologically from 68A2 to C1, an interval comprising 10 or 11 polytene chromosome bands. The gene for cytoplasmic superoxide dismutase (cSOD) maps within this interval, as does low xanthine dehydrogenase (lxd).—Recessive lethal mutations were generated within the region by ethyl methanesulfonate mutagenesis and by hybrid dysgenesis. These lethals fall into 11 functional groups, which were partially ordered by complementation with deletions having breakpoints within the region. The distribution of dysgenesis-induced mutations in the region is highly nonrandom, the majority being within a single group. The mutability of this gene is comparable to that of singed (sn), a documented "hot-spot" for P-element insertion.—One of the EMS-induced lethals, l-108, fulfills biochemical criteria expected of a hypomorphic allele of cSOD. To our knowledge this is the first such allele recovered of this gene, and it should prove very useful in an analysis of the in vivo function of cytoplasmic SOD. Indeed, it has been demonstrated that cSOD is almost certainly a vital gene.

1974 ◽  
Vol 24 (1) ◽  
pp. 1-10 ◽  
Author(s):  
J. K. Lim ◽  
L. A. Snyder

SUMMARYSalivary-gland chromosomes of 54 methyl methanesulphonate- and 50 triethylene melamine-induced X-chromosome recessive lethals in Drosophila melanogaster were analysed. Two of the lethals induced by the mono-functional agent and 11 of those induced by the polyfunctional agent were found to be associated with detectable aberrations. A complementation analysis was also done on 82 ethyl methanesulphonate- and 34 triethylene melamine-induced recessive lethals in the zeste-white region of the X chromosome. The EMS-induced lethals were found to represent lesions affecting only single cistrons. Each of the 14 cistrons in the region known to mutate to a lethal state was represented by mutant alleles, but in widely different frequencies. Seven of the TEM-induced lethals were associated with deletions, only one of which had both breakpoints within the mapped region. Twenty-six of the 27 mutations in which only single cistrons were affected were mapped to 7 of the 14 known loci. One TEM- and two EMS-induced mutations were alleles representing a previously undetected locus in the zeste-white region.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


1987 ◽  
Vol 7 (4) ◽  
pp. 1545-1548
Author(s):  
M R Kelley ◽  
S Kidd ◽  
R L Berg ◽  
M W Young

P elements move about the Drosophila melanogaster genome in a nonrandom fashion, preferring some chromosomal targets for insertion over others (J. C. J. Eeken, F. H. Sobels, V. Hyland, and A. P. Schalet, Mutat. Res. 150:261-275, 1985; W. R. Engels, Annu. Rev. Genet. 17:315-344, 1983; M. D. Golubovsky, Y. N. Ivanov, and M. M. Green, Proc. Natl. Acad. Sci. USA 74:2973-2975, 1977; M. J. Simmons and J. K. Lim, Proc. Natl. Acad. Sci. USA 77:6042-6046, 1980). Some of this specificity may be due to recognition of a particular DNA sequence in the target DNA; derivatives of an 8-base-pair consensus sequence are occupied by these transposable elements at many different chromosomal locations (K. O'Hare and G. M. Rubin, Cell 34:25-36, 1983). An additional level of specificity of P-element insertions is described in this paper. Of 14 mutations induced in the complex locus Notch by hybrid dysgenesis, 13 involved P-element insertions at or near the transcription start site of the gene. This clustering was not seen in other transposable element-induced mutations of Notch. DNA sequences homologous to the previously described consensus target for P-element insertion are not preferentially located in this region of the locus. The choice of a chromosomal site for integration appears to be based on more subtle variations in chromosome structure that are probably associated with activation or expression of the target gene.


1995 ◽  
Vol 70 (2) ◽  
pp. 197-209
Author(s):  
Yuzuru OGUMA ◽  
Masami SAWA ◽  
Hiroshi MATSUBAYASH ◽  
Maki NONAKA ◽  
Masatoshi TOMARU

1986 ◽  
Vol 6 (5) ◽  
pp. 1520-1528 ◽  
Author(s):  
D Y Chang ◽  
B Wisely ◽  
S M Huang ◽  
R A Voelker

A hybrid dysgenesis-induced allele [su(s)w20] associated with a P-element insertion was used to clone sequences from the su(s) region of Drosophila melanogaster by means of the transposon-tagging technique. Cloned sequences were used to probe restriction enzyme-digested DNAs from 22 other su(s) mutations. None of three X-ray-induced or six ethyl methanesulfonate-induced su(s) mutations possessed detectable variation. Seven spontaneous, four hybrid dysgenesis-induced, and two DNA transformation-induced mutations were associated with insertions within 2.0 kilobases (kb) of the su(s)w20 P-element insertion site. When the region of DNA that included the mutational insertions was used to probe poly(A)+ RNAs, a 5-kb message was detected in wild-type RNA that was present in greatly reduced amounts in two su(s) mutations. By using strand-specific probes, the direction of transcription of the 5-kb message was determined. The mutational insertions lie in DNA sequences near the 5' end of the 5-kb message. Three of the seven spontaneous su(s) mutations are associated with gypsy insertions, but they are not suppressible by su(Hw).


Genetics ◽  
1990 ◽  
Vol 124 (2) ◽  
pp. 317-329
Author(s):  
A Duttaroy ◽  
M McCarron ◽  
K Sitaraman ◽  
G Doughty ◽  
A Chovnick

Abstract P element dysgenesis associated male recombination in Drosophila was examined with a selective system focused upon 5% of the standard female genetic map divided into eight recombination segments. We found no correspondence between P element mobilization events and recombination in males in the intervals monitored. We defined two adjacent short genetic and molecular regions, one devoid of male recombination and the other acting as a "hot spot" for exchange in the absence of supporting P element insertion and excision activity. These data suggest that, even in the presence of mobilizing P elements, transposase may be active at non-P element sites, and that the genome may harbor sequences ranging from highly responsive to completely unresponsive to transposase action. A viewpoint is presented wherein P elements, with sequences that bind transposase, serve to focus the recombination action of transposase to encompass a region of DNA radiating outward from the initial binding site. We suggest that this region is measured in terms of chromosomal segments rather than limited to P element sequences.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 149-160 ◽  
Author(s):  
B Lemaitre ◽  
S Ronsseray ◽  
D Coen

Abstract The transposition of P elements in Drosophila melanogaster is regulated by products encoded by the P elements themselves. The P cytotype, which represses transposition and associated phenomena, exhibits both a maternal effect and maternal inheritance. The genetic and molecular mechanisms of this regulation are complex and not yet fully understood. In a previous study, using P-lacZ fusion genes, we have shown that P element regulatory products were able to inhibit the activity of the P promoter in somatic tissues. However, the repression observed did not exhibit the maternal effect characteristic of the P cytotype. With a similar approach, we have assayed in vivo the effect of P element regulatory products in the germline. We show that the P cytotype is able to repress the P promoter in the germline as well as in the soma. Furthermore, this repression exhibits a maternal effect restricted to the germline. On the basis of these new observations, we propose a model for the mechanism of P cytotype repression and its maternal inheritance.


1988 ◽  
Vol 52 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Walter F. Eanes ◽  
Cedric Wesley ◽  
Jody Hey ◽  
David Houle ◽  
James W. Ajioka

SummaryIn this study we estimate the frequency at which P-element insertion events, as identified by in situ hybridization, generate lethal and mild viability mutations. The frequency of lethal mutations generated per insertion event was 0·004. Viability dropped an average of 1% per insertion event. Our results indicate that it is deletions and rearrangements resulting from the mobilization of P elements already in place and not the insertions per se that cause the drastic effects on viability and fitness observed in most studies of P–M dysgenesis-derived mutations. Elements of five other families (I, copia, 412, B104, and gypsy) were not mobilized in these crosses. Finally, we contrast the density of P elements on the X chromosome with the density on the four autosomal arms in a collection of thirty genomes from an African population. The relative number of P elements on the X chromosome is too high to be explained by either a hemizygous selection or a neutrality model. The possible reasons for the failure to detect selection are discussed.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557 ◽  
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


1993 ◽  
Vol 61 (3) ◽  
pp. 177-193 ◽  
Author(s):  
Chaoqiang Lai ◽  
Trudy F. C. Mackay

SummaryX chromosomes derived from crosses of inbred P and M Drosophila melanogaster strains that had extreme effects on abdominal and/or sternopleural bristle number in males, were further analyzed to determine their effects in females and to map the loci at which the mutations occurred. Seven lines that had on average 3.9 fewer sternopleural bristles than wildtype in males had average homozygous sternopleural bristle effects of −2·2. The bristle effects were partially recessive, with an average degree of dominance of −0·60. Physical mapping of the sternopleural bristle effects of these lines placed them all at approximately 24·7 cM. These mutations are apparently allelic on the basis of a complementation test, and deficiency mapping indicates they occur within chromosomal bands 8A4; 8C6. In situ hybridization analysis of the sites of P element insertions of these lines suggests that mutations probably resulted from excision of P elements at 8C on the original inbred P strain chromosome. Two additional lines, NDC(19) and DP(146), had reduced numbers of sternopleural and abdominal bristles. NDC(19) males had 9·7 fewer abdominal and 8·6 fewer sternopleural bristles than wildtype. The corresponding homozygous abdominal and sternopleural bristle number effects were −5·8 and −3·8, respectively; with the abdominal bristle effect completely recessive and the sternopleural bristle effect nearly additive. DP(146) males had 6·2 fewer abdominal and 4·1 fewer sternopleural bristles than wildtype, with homozygous abdominal bristle effects of −4·3 and sternopleural bristle effects of −2·0. Abdominal bristle effects of this line were partially recessive whereas the sternopleural bristle effects were additive. Physical mapping showed effects on both bristle traits segregated jointly in these two lines, with the NDC(19) mutation closely linked to y and the DP(146) mutation 0·17 cM from it. Complementation tests and deficiency mapping also indicate the mutations in lines NDC(19) and DP(146) are at closely linked but separate loci within chromosomal bands 1B2; 1B4–6 and 1B4–6; 1B10 respectively, with some epistatic effects. In situ hybridization analysis of sites of P element insertion suggest that the NDC(19) mutation, which may be a scute allele, was probably caused by a P element insertion in the IB region; the DP(146) mutation is also associated with an insertion at IB.


Sign in / Sign up

Export Citation Format

Share Document