bladder cancer cell
Recently Published Documents


TOTAL DOCUMENTS

640
(FIVE YEARS 146)

H-INDEX

39
(FIVE YEARS 7)

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Weihua Chen ◽  
Weifeng Wang ◽  
Jun Zhang ◽  
Guoqiang Liao ◽  
Jie Bai ◽  
...  

Traditional Chinese medicine (TCM) is widely used as an alternative therapy for cancer treatment in China. Glutamine catabolism plays an important role in cancer development. Qici Sanling decoction (QCSL) suppresses bladder cancer growth. However, the association between QCSL and glutamine catabolism remains unknown. In this study, different doses of QCSL were applied to T24 cells, followed by the measurements of cell viability and apoptosis using CCK-8 and Annexin V/PI assay, respectively. Furthermore, glutamine consumption was detected using the glutamine assay kit. QCSL was observed to inhibit cell growth and induced cell apoptosis in a dose-dependent manner. Analysis of glutamine consumption revealed that QCSL suppressed glutamine consumption in T24 cells. Furthermore, QCSL decreased the mRNA and protein levels of c-Myc, GLS1, and SLC1A5. All these effects induced by QCSL could be alleviated by c-Myc overexpression, indicating c-Myc was involved in the protective role of QCSL in bladder cancer. In addition, QCSL was found to inhibit tumor growth in the xenograft tumor model. The similar results were obtained in tumor samples that protein levels of c-Myc, GLS1, and SLC1A5 were decreased upon treatment with QCSL. In conclusion, QCSL suppresses glutamine consumption and bladder cancer cell growth through inhibiting c-Myc expression.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan Tsz-Hei Tse ◽  
Hongda Zhao ◽  
Christine Yim-Ping Wong ◽  
Angel Wing-Yan Kong ◽  
Ronald Cheong-Kin Chan ◽  
...  

AbstractUrinary bladder cancer is a common cancer worldwide. Currently, the modality of treating and monitoring bladder cancer is wide. Nonetheless, the high recurrence rate of non-muscle-invasive bladder cancer after surgical resection is still unsatisfactory. Hereby, our study demonstrated whether the intra-operative and post-operative environments will affect bladder cancer recurrence utilizing in vitro cell line model. Bladder cancer cell lines were submerged in four different irrigating fluids for assessing their tumorigenic properties. Our results showed that sterile water performed the best in terms of the magnitude of cytotoxicity to cell lines. Besides, we also investigated cytotoxic effects of the four irrigating agents as well as mitomycin C (MMC) in normothermic and hyperthermic conditions. We observed that sterile water and MMC had an increased cytotoxic effect to bladder cancer cell lines in hyperthermic conditions. Altogether, our results could be translated into clinical practice in the future by manipulating the intra-operative and post-operative conditions in order to lower the chance of residual cancer cells reimplant onto the bladder, which in turns, reducing the recurrence rate of bladder cancers.


2021 ◽  
Author(s):  
Andrew J Weickhardt ◽  
David K Lau ◽  
Margeaux Hodgson-Garms ◽  
Austen Lavis ◽  
Laura J Jenkins ◽  
...  

Abstract Background Mutations and fusions in Fibroblast Growth Factor Receptor 3 (FGFR3) occur in 10-20% of metastatic urothelial carcinomas and confers sensitivity to FGFR inhibitors. However, responses to these agents are often short-lived due to the development of acquired resistance. The objective of this study was to identify mechanisms of resistance to FGFR inhibitors in two previously uncharacterised bladder cancer cell lines harbouring FGFR3 fusions and assess rational combination therapies to enhance sensitivity to these agents. Methods Acquired resistance to FGFR inhibitors was generated in two FGFR3 fusion harbouring cell lines, SW780 (FGFR3-BAIAP2L1 fusion) and RT4 (FGFR3-TACC3 fusion), by long-term exposure to the FGFR inhibitor BGJ398. Changes in levels of receptor tyrosine kinases were assessed by phospho-RTK arrays and immunoblotting. Changes in cell viability and proliferation were assessed by the Cell-Titre Glo assay and by propidium iodide staining and FACS analysis. Results Long term treatment of FGFR3-fusion harbouring SW780 and RT4 bladder cancer cell lines with the BGJ398 resulted in the establishment of resistant clones. These clones were cross-resistant to the clinically approved FGFR inhibitor erdafitinib and the covalently binding irreversible FGFR inhibitor TAS-120, but remained sensitive to the MEK inhibitor trametinib, indicating resistance is mediated by alternate activation of MAPK signalling. The FGFR inhibitor-resistant SW780 and RT4 lines displayed increased expression of pERBB3, and strikingly, combination treatment with an FGFR inhibitor and the ATP-competitive pan-ERBB inhibitor AZD8931 overcame this resistance. Notably, rapid induction of pERBB3 and reactivation of pERK also occurred in parental FGFR3 fusion-driven lines within 24 hours of FGFR inhibitor treatment, and combination treatment with an FGFR inhibitor and AZD8931 delayed the reactivation of pERBB3 and pERK and synergistically inhibited cell proliferation. Conclusions We demonstrate that increased expression of pERBB3 is a key mechanism of adaptive resistance to FGFR inhibitors in FGFR3-fusion driven bladder cancers, and that this also occurs rapidly following FGFR inhibitor treatment. Our findings demonstrate that resistance can be overcome by combination treatment with a pan-ERBB inhibitor and suggest that upfront combination treatment with FGFR and pan-ERBB inhibitors warrants further investigation for FGFR3-fusion harbouring bladder cancers.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Guanwen Zhou ◽  
Keqiang Yan ◽  
Jikai Liu ◽  
Lijian Gao ◽  
Xianzhou Jiang ◽  
...  

AbstractThe aberrant expression of fat mass and obesity-associated protein (FTO) has been confirmed to be associated with a variety of cancers and participates in the regulation of multiple biological behaviours. FTO plays an oncogenic role in bladder cancer, but few studies have focused on how FTO promotes bladder cancer progression by regulating miRNA synthesis. Here, we confirmed that FTO expression was significantly increased in bladder cancer and was associated with a poor prognosis. FTO overexpression promoted bladder cancer cell proliferation, whereas FTO knockdown inhibited bladder cancer cell proliferation. We also demonstrated that FTO promoted bladder cancer cell proliferation via the FTO/miR-576/CDK6 pathways. Taken together, our work revealed that FTO plays a critical role in bladder cancer and could be a potential diagnostic or prognostic biomarker for this disease.


2021 ◽  
Vol 10 (11) ◽  
pp. 4262-4274
Author(s):  
Pei Wan ◽  
Zhilin Chen ◽  
Minzhi Huang ◽  
Huiming Jiang ◽  
Huajun Wu ◽  
...  

2021 ◽  
Vol 17 ◽  
Author(s):  
Carolina B. Gomes ◽  
Caroline L. Corrêa ◽  
Diego C. Cabrera ◽  
Marcelo G. M. D'Oca ◽  
Martha Ruiz ◽  
...  

Background: Developing methods to synthesize highly functionalized and complex 1,2,3-triazoles from various combinations of substrates remains a significant challenge in organic synthesis. Thus, to the best of our knowledge, an organocatalytic approach to synthesize 1,2,3-triazoles derived from fatty acids has not been explored. Objective: In this sense, we describe here the organocatalyzed synthesis and preliminary results of antitumor and cytotoxic activity of a range of 1,2,3-triazoles derived from fatty esters. Methods: To synthesize 1,2,3-triazoles 3 derived from fatty β-ketoesters, we performed the reaction of appropriate aryl azides 2a-j with β-ketoesters 1a-c in the presence of 5 mol% of DBU using DMSO as a solvent at 70 °C for 24 h. The viability of 5637 cells was determined by measuring the reduction of soluble MTT to water-insoluble formazan. The IC50 concentration that inhibits 50% of cell growth and the results were obtained by at least three independent experiments in triplicate for each test. Results: Through enolate-mediated organocatalysis, 1,2,3-triazoles 3 derived from fatty β-ketoesters were synthesized in moderate to excellent yields by reacting fatty esters 1 with aryl azides 2 in the presence of a catalytic amount of 1,8-diazabicyclo[5.4.0]undec-7-ene (5 mol%). All compounds derived from palmitic acetoacetate 1a were evaluated regarding induced cytotoxicity in vitro in a human bladder cancer cell line, and compounds 3a, 3d, 3e, and 3g were shown to be promising alternatives for bladder cancer treatment and presented the lowest inhibitory concentration of IC50. Conclusion: We described a synthetic procedure to prepare 1,2,3-triazoles derived from fatty β-ketoesters by DBU-catalyzed 1,3-dipolar cycloaddition reactions of fatty esters with different aryl azides. Compounds derived from palmitic acetoacetate were screened for antitumor and cytotoxic activity in vitro in human bladder cancer cell lines, and compounds 3a, 3d, 3e, and 3g showed potential to treat bladder cancer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Huan Wang ◽  
Wenqin Luo ◽  
Xuliang Wang ◽  
Dingwei Xue ◽  
Liangliang Ren ◽  
...  

Testicular nuclear receptor 4 (TR4) is a member of the nuclear hormone receptor family and acts as a ligand-activated transcription factor and functions in many biological processes, such as development, cellular differentiation, and homeostasis. Recent studies have shown that TR4 plays an important role in prostate cancer, renal cell carcinoma, and hepatocellular carcinoma; however, its potential link to bladder cancer (BC) remains unknown. This study found that bladder cancer exhibited a higher expression of TR4 compared to normal tissues. Overexpressed TR4 promoted the bladder cancer cell proliferation, and knocked down TR4 with TR4-siRNA suppressed the bladder cancer cell proliferation. Mechanistic studies reveal that TR4 functions by altering the expression of Bcl-2 to regulate apoptosis in bladder cancer cells. Furthermore, knocking down Bcl-2 reversed the BC proliferation induced by TR4. In vivo, we also confirmed that TR4 knockdown mice (TR4+/−) showed slower bladder cancer growth than wild-type mice (TR4+/+) induced by the carcinogenic chemicals. Moreover, TR4+/− mice showed a lower grade of histopathology than the control group. In conclusion, these results indicate that TR4 plays a key role in bladder cancer proliferation, and targeting TR4 would probably be a potential strategy for bladder cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document