scholarly journals STERILITY AND HYPERMUTABILITY IN THE P-M SYSTEM OF HYBRID DYSGENESIS IN DROSOPHILA MELANOGASTER

Genetics ◽  
1986 ◽  
Vol 114 (4) ◽  
pp. 1147-1163
Author(s):  
Gordon J Kocur ◽  
Eric A Drier ◽  
Michael J Simmons

ABSTRACT Inbred wild strains of Drosophila melanogaster derived from the central and eastern United States were used to make dysgenic hybrids in the P-M system. These strains possessed P elements and the P cytotype, the condition that represses P element transposition. Their hybrids were studied for the mutability of the P element insertion mutation, snw, and for the incidence of gonadal dysgenesis (GD) sterility. All the strains tested were able to induce hybrid dysgenesis by one or both of these assays; however, high levels of dysgenesis were rare. Sets of X chromosomes and autosomes from the inbred wild strains were more effective at inducing GD sterility than were sets of Y chromosomes and autosomes. In two separate analyses, GD sterility was positively correlated with snw mutability, suggesting a linear relationship. However, one strain appeared to induce too much GD sterility for its level of snw destabilization, indicating an uncoupling of these two manifestations of hybrid dysgenesis.

Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 663-676 ◽  
Author(s):  
M J Simmons ◽  
J D Raymond ◽  
K E Rasmusson ◽  
L M Miller ◽  
C F McLarnon ◽  
...  

Abstract Inbred lines derived from a strain called Sexi were analyzed for their abilities to repress P element-mediated gonadal dysgenesis. One line had high repression ability, four had intermediate ability and two had very low ability. The four intermediate lines also exhibited considerable within-line variation for this trait; furthermore, in at least two cases, this variation could not be attributed to recurring P element movement. Repression of gonadal dysgenesis in the hybrid offspring of all seven lines was due primarily to a maternal effect; there was no evidence for repression arising de novo in the hybrids themselves. In one of the lines, repression ability was inherited maternally, indicating the involvement of cytoplasmic factors. In three other lines, repression ability appeared to be determined by partially dominant or additive chromosomal factors; however, there was also evidence for a maternal effect that reduced the expression of these factors in at least two of the lines. In another line, repression ability seemed to be due to recessive chromosomal factors. All seven lines possessed numerous copies of a particular P element, called KP, which has been hypothesized to produce a polypeptide repressor of gonadal dysgenesis. This hypothesis, however, does not explain why the inbred Sexi lines varied so much in their repression abilities. It is suggested that some of this variation may be due to differences in the chromosomal position of the KP elements, or that other nonautonomous P elements are involved in the repression of hybrid dysgenesis in these lines.


1991 ◽  
Vol 57 (3) ◽  
pp. 213-226 ◽  
Author(s):  
Ellen M. Heath ◽  
Michael J. Simmons

SummaryTwelve inbred lines derived from an M′ strain of Drosophila melanogaster were used to study the repression of P-element-mediated hybrid dysgenesis. Initial assessments indicated that the lines differed in the ability to repress gonadal dysgenesis, and that this ability was highly correlated with the ability to repress snw hypermutability. Later assessments indicated that most of the lines with low or intermediate repression potential evolved to a state of higher repression potential; however, Southern analyses failed to reveal significant changes in the array of genomic P elements that could account for this evolution. In addition, none of the lines possessed the incomplete P element known as KP, which has been proposed to explain repression in some D. melanogaster strains. One of the lines maintained intermediate repression potential throughout the period of study (52 generations), indicating that the intermediate condition was not intrinsically unstable. Genetic analyses demonstrated that in some of the lines, repression potential was influenced by factors that were inherited maternally through at least two generations; however, these factors were not as influential as those in a classic P cytotype strain. Additional tests with a dysgenesis-inducing X chromosome called T-5 indicated that repression itself was mediated by a combination of maternal effects and paternally inherited factors that were expressed after fertilization. These tests also suggested that in some circumstances, the P transposase, or its message, might be transmitted through the maternal cytoplasm.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 647-662 ◽  
Author(s):  
K E Rasmusson ◽  
M J Simmons ◽  
J D Raymond ◽  
C F McLarnon

Abstract Genetic analyses involving chromosomes from seven inbred lines derived from a single M' strain were used to study the quantitative relationships between the incidence and severity of P-M hybrid dysgenesis and the number of genomic P elements. In four separate analyses, the mutability of snw, a P element-insertion mutation of the X-linked singed locus, was found to be inversely related to the number of autosomal P elements. Since snw mutability is caused by the action of the P transposase, this finding supports the hypothesis that genomic P elements titrate the transposase present within a cell. Other analyses demonstrated that autosomal transmission ratios were distorted by P element action. In these analyses, the amount of distortion against an autosome increased more or less linearly with the number of P elements carried by the autosome. Additional analyses showed that the magnitude of this distortion was reduced when a second P element-containing autosome was present in the genome. This reduction could adequately be explained by transposase titration; there was no evidence that it was due to repressor molecules binding to P elements and inhibiting their movement. The influence of genomic P elements on the incidence of gonadal dysgenesis was also investigated. Although no simple relationship between the number of P elements and the incidence of the trait could be discerned, it was clear that even a small number of elements could increase the incidence markedly. The failure to find a quantitative relationship between P element number and the incidence of gonadal dysgenesis probably reflects the complex etiology of this trait.


Genetics ◽  
1993 ◽  
Vol 133 (3) ◽  
pp. 605-622 ◽  
Author(s):  
K E Rasmusson ◽  
J D Raymond ◽  
M J Simmons

Abstract Individual P elements that were genetically isolated from wild-type strains were tested for their abilities to repress two aspects of hybrid dysgenesis: gonadal dysgenesis and mutability of a double-P element-insertion allele of the singed locus (snw). These elements were also characterized by Southern blotting, polymerase chain reaction amplification and DNA sequencing. Three of the elements were 1.1-kb KP elements, one was a 1.2-kb element called D50, and one was a 0.5-kb element called SP. These three types of elements could encode polypeptides of 207, 204, and 14 amino acids, respectively. Gonadal dysgenesis was repressed by two of the KP elements (denoted KP(1) and KP(6)) and by SP, but not by the third KP element (KP(D)), nor by D50. Repression of gonadal dysgenesis was mediated by a maternal effect, or by a combination of zygotic and maternal effects generated by the P elements themselves. The mutability of snw was repressed by the KP(1) and KP(6) elements, by D50 and by SP, but not by KP(D); however, the SP element repressed snw mutability only when the transposase came from complete P elements and the D50 element repressed it only when the transposase came from the modified P element known as delta 2-3. In all cases, repression of snw mutability appeared to be mediated by a zygotic effect of the isolated P element. Each of the isolated elements was also tested for its ability to suppress the phenotype of a P-insertion mutation of the vestigial locus (vg21-3). D50 was a moderate suppressor whereas SP and the three KP elements had little or no effect. These results indicate that each isolated P element had its own profile of repression and suppression abilities. It is suggested that these abilities may be mediated by P-encoded polypeptides or by antisense P RNAs initiated from external genomic promoters.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


1998 ◽  
Vol 71 (1) ◽  
pp. 21-30 ◽  
Author(s):  
RICHARD M. BADGE ◽  
JOHN F. Y. BROOKFIELD

We have discovered, in an inbred line (Loua) of Drosophila melanogaster from Zaïre, a third chromosome showing unusual P element repression. Repression of P element transposition by this chromosome, named Loua3, is dominant zygotic and has three unusual properties. Firstly, its repression of the gonadal dysgenesis caused by a strong P haplotype is strongly temperature-dependent, being most evident at higher rearing temperatures. Secondly, subdivision of Loua3 by recombination abolishes repression: the effect is apparently a function of the intact chromosome. Finally, Loua3 also diminishes somatic lethality when chromosomes carrying many ‘ammunition’ elements (Birmingham2) are exposed to the constitutive transposase source Δ2-3(99B). The chromosome has 17 P elements, none full-length, located in at least 12 dispersed positions.


1992 ◽  
Vol 60 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Dominique Higuet ◽  
Dominique Anxolabéhére ◽  
Danielle Nouaud

SummaryTransposable P elements in Drosophila melanogaster cause hybrid dysgenesis if their mobility is not repressed. The ability to regulate the dysgenic activity of the P elements depends on several mechanisms, one of which hypothesized that a particular deleted P element (the KP element) results in a non-susceptibility which is biparentally transmitted. In this study totally nonsusceptible lines, and susceptible lines containing exclusively KP elements (IINS2 line and IIS2 line) were isolated from a M' strain. We show that non-susceptibility is correlated with a particular insertion of one KP element located at the cytological site 47D1. The repression ability of the GD sterility is determined by a recessive chromosomal factor, and cannot be due to the KP-element number. Here the repression of the P mobility is associated with reduction of the P transcripts and the inhibition of P promoter activity.


Genetics ◽  
1988 ◽  
Vol 119 (4) ◽  
pp. 889-902
Author(s):  
I A Boussy ◽  
M J Healy ◽  
J G Oakeshott ◽  
M G Kidwell

Abstract The latitudinal cline in P-M gonadal dysgenesis potential in eastern Australia has been shown to comprise three regions which are, from north to south respectively, P, Q, and M, with the P-to-Q and Q-to-M transitions occurring over relatively short distances. The P element complements of 30 lines from different regions of the cline were determined by molecular techniques. The total amount of P element-hybridizing DNA was high in all lines, and it did not correlate in any obvious way with the P-M phenotypes of individual lines. The number of potentially full-sized P elements per genome was high in lines from the P regions, but variable or low among lines from the Q and M regions, and thus declined overall from north to south. A particular P element deletion-derivative, the KP element, occurred in all the tested lines. The number of KP elements was low in lines from the P region, much higher in lines from the Q region, and highest among lines from the M region, thus forming a cline reciprocal to that of the full-sized P elements. Another transposable element, hobo, which has been described as causing dysgenic traits similar to those of P-M hybrid dysgenesis, was shown to be present in all lines and to vary among them in number, but not in any latitudinal pattern. The P-M cline in gonadal dysgenesis potential can be inferred to be based on underlying clinal patterns of genomic P element complements. P activity of a line was positively correlated with the number of full-sized P elements in the line, and negatively correlated with the number of KP elements. Among Q and M lines, regulatory ability was not correlated with numbers of KP elements.


1989 ◽  
Vol 54 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Georges Periquet

SummaryM and M′ strains of Drosophila melanogaster in the P-M system of hybrid dysgenesis were compared in two series of tests, with the following results. (1) The singed-weak hypermutability regulation test showed that M′ strains had lower P excision rates than M strains, suggesting that P-elements repression must occur in M′ strains although it is not detectable by gonadal dysgenesis assays. (2) The evolution of mixed P + M and mixed P + M′ populations was compared, using a strong P strain. The P + M cultures invariably evolved in a few generations into strong P cultures, while the P + M′ cultures evolved into P-type cultures with reduced P-factor potentials. However, after 30 generations of culture, both these types of mixed cultures had similar P copy numbers, suggesting that regulation of copy number had occurred in them.


Sign in / Sign up

Export Citation Format

Share Document