scholarly journals Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying.

Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 703-721 ◽  
Author(s):  
C Desai ◽  
H R Horvitz

Abstract We have isolated and characterized 45 Caenorhabditis elegans mutants presumed to be defective in the functioning of the hermaphrodite-specific neurons (HSNs). Like hermaphrodites that lack the HSN motor neurons, these mutants are egg-laying defective and do not lay eggs in response to exogenous imipramine but do lay eggs in response to exogenous serotonin. Twenty of the 45 mutations define 10 new egl genes; the other 25 mutations are alleles of five previously defined genes, four of which are known to affect the HSNs. Seven mutations in three genes cause the HSNs to die in hermaphrodites, as they normally do in males. These genes appear to be involved in the determination of the sexual phenotype of the HSNs, and one of them (egl-41) is a newly identified gene that may function generally in sex determination. Five of the 15 genes are defined only by mutations that have dominant effects on egg laying. One gene egl(n1108), is defined by a temperature-sensitive allele that has a temperature-sensitive period after HSN development is complete, suggesting that egl(n1108) may be involved in HSN synaptic transmission. Four of the genes are defined by single alleles, which suggests that other such genes remain to be discovered. Mutations in no more than 4 of the 15 genes specifically affect the HSNs, indicating that there are few genes with functions needed only in this single type of nerve cell.

Genetics ◽  
1988 ◽  
Vol 118 (1) ◽  
pp. 61-74
Author(s):  
T M Rogalski ◽  
D L Riddle

Abstract The amanitin-binding subunit of RNA polymerase II in Caenorhabditis elegans is encoded by the ama-1 gene, located approximately 0.05 map unit to the right of dpy-13 IV. Using the amanitin-resistant ama-1(m118) strain as a parent, we have isolated amanitin-sensitive mutants that carry recessive-lethal ama-1 alleles. Of the six ethyl methanesulfonate-induced mutants examined, two are arrested late in embryogenesis. One of these is a large deficiency, mDf9, but the second may be a novel point mutation. The four other mutants are hypomorphs, and presumably produce altered RNA polymerase II enzymes with some residual function. Two of these mutants develop into sterile adults at 20 degrees but are arrested as larvae at 25 degrees, and two others are fertile at 20 degrees and sterile at 25 degrees. Temperature-shift experiments performed with the adult sterile mutant, ama-1(m118m238ts), have revealed a temperature-sensitive period that begins late in gonadogenesis and is centered around the initiation of egg-laying. Postembryonic development at 25 degrees is slowed by 30%. By contrast, the amanitin-resistant allele of ama-1 has very little effect on developmental rate or fertility. We have identified 15 essential genes in an interval of 4.5 map units surrounding ama-1, as well as four gamma-ray-induced deficiencies and two duplications that include the ama-1 gene. The larger duplication, mDp1, may include the entire left arm of chromosome IV, and it recombines with the normal homologue at a low frequency. The smallest deficiency, mDf10, complements all but three identified genes: let-278, dpy-13 and ama-1, which define an interval of only 0.1 map unit. The terminal phenotype of mDf10 homozygotes is developmental arrest during the first larval stage, suggesting that there is sufficient maternal RNA polymerase II to complete embryonic development.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 259-271 ◽  
Author(s):  
Ilya Vilinsky ◽  
Bryan A Stewart ◽  
James Drummond ◽  
Iain Robinson ◽  
David L Deitcher

AbstractThe synaptic protein SNAP-25 is an important component of the neurotransmitter release machinery, although its precise function is still unknown. Genetic analysis of other synaptic proteins has yielded valuable information on their role in synaptic transmission. In this study, we performed a mutagenesis screen to identify new SNAP-25 alleles that fail to complement our previously isolated recessive temperature-sensitive allele of SNAP-25, SNAP-25ts. In a screen of 100,000 flies, 26 F1 progeny failed to complement SNAP-25ts and 21 of these were found to be null alleles of SNAP-25. These null alleles die at the pharate adult stage and electroretinogram recordings of these animals reveal that synaptic transmission is blocked. At the third instar larval stage, SNAP-25 nulls exhibit nearly normal neurotransmitter release at the neuromuscular junction. This is surprising since SNAP-25ts larvae exhibit a much stronger synaptic phenotype. Our evidence indicates that a related protein, SNAP-24, can substitute for SNAP-25 at the larval stage in SNAP-25 nulls. However, if a wild-type or mutant form of SNAP-25 is present, then SNAP-24 does not appear to take part in neurotransmitter release at the larval NMJ. These results suggest that the apparent redundancy between SNAP-25 and SNAP-24 is due to inappropriate genetic substitution.


1987 ◽  
Vol 105 (5) ◽  
pp. 2123-2135 ◽  
Author(s):  
A A Hyman ◽  
J G White

The establishment of cell division axes was examined in the early embryonic divisions of Caenorhabditis elegans. It has been shown previously that there are two different patterns of cleavage during early embryogenesis. In one set of cells, which undergo predominantly determinative divisions, the division axes are established successively in the same orientation, while division axes in the other set, which divide mainly proliferatively, have an orthogonal pattern of division. We have investigated the establishment of these axes by following the movement of the centrosomes. Centrosome separation follows a reproducible pattern in all cells, and this pattern by itself results in an orthogonal pattern of cleavage. In those cells that divide on the same axis, there is an additional directed rotation of pairs of centrosomes together with the nucleus through well-defined angles. Intact microtubules are required for rotation; rotation is prevented by inhibitors of polymerization and depolymerization of microtubules. We have examined the distribution of microtubules in fixed embryos during rotation. From these and other data we infer that microtubules running from the centrosome to the cortex have a central role in aligning the centrosome-nuclear complex.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 741-753 ◽  
Author(s):  
D M Miller ◽  
C J Niemeyer ◽  
P Chitkara

Abstract The unc-4 gene of Caenorhabditis elegans encodes a homeodomain protein that defines synaptic input to ventral cord motor neurons. unc-4 mutants are unable to crawl backward because VA motor neurons are miswired with synaptic connections normally reserved for their sister cells, the VB motor neurons. These changes in connectivity are not accompanied by any visible effects upon neuronal morphology, which suggests that unc-4 regulates synaptic specificity but not axonal guidance or outgrowth. In an effort to identify other genes in the unc-4 pathway, we have devised a selection scheme for rare mutations that suppress the Unc-4 phenotype. We have isolated four, dominant, extragenic, allele-specific suppressors of unc-4(e2322ts), a temperature sensitive allele with a point mutation in the unc-4 homeodomain. Our data indicate that these suppressors are gain-of-function mutations in the previously identified unc-37 gene. We show that the loss-of-function mutation unc-37(e262) phenocopies the Unc-4 movement defect but does not prevent unc-4 expression or alter VA motor neuron morphology. These findings suggest that unc-37 functions with unc-4 to specify synaptic input to the VA motor neurons. We propose that unc-37 may be regulated by unc-4. Alternatively, unc-37 may encode a gene product that interacts with the unc-4 homeodomain.


Genetics ◽  
1990 ◽  
Vol 125 (1) ◽  
pp. 29-39 ◽  
Author(s):  
M K Barton ◽  
J Kimble

Abstract In wild-type Caenorhabditis elegans, the XO male germ line makes only sperm and the XX hermaphrodite germ line makes sperm and then oocytes. In contrast, the germ line of either a male or a hermaphrodite carrying a mutation of the fog-1 (feminization of the germ line) locus is sexually transformed: cells that would normally make sperm differentiate as oocytes. However, the somatic tissues of fog-1 mutants remain unaffected. All fog-1 alleles identified confer the same phenotype. The fog-1 mutations appear to reduce fog-1 function, indicating that the wild-type fog-1 product is required for specification of a germ cell as a spermatocyte. Two lines of evidence indicate that a germ cell is determined for sex at about the same time that it enters meiosis. These include the fog-1 temperature sensitive period, which coincides in each sex with first entry into meiosis, and the phenotype of a fog-1; glp-1 double mutant. Experiments with double mutants show that fog-1 is epistatic to mutations in all other sex-determining genes tested. These results lead to the conclusion that fog-1 acts at the same level as the fem genes at the end of the sex determination pathway to specify germ cells as sperm.


2007 ◽  
Vol 28 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Carlos Piña ◽  
Alejandro Larriera ◽  
Pablo Siroski ◽  
Luciano Verdade ◽  
Valentine Lance

AbstractAll crocodiles studied to date exhibit temperature-dependent sex determination. During the many weeks from egg laying to hatch there is a period of 10 to 15 d in the middle third of incubation (in the American alligator) during which the sex of the embryo is irreversibly fixed, referred to as the temperature-sensitive period or TSP. In this work we investigated the TSP in Caiman latirostris eggs incubated at female-inducing and male-inducing temperatures (29° C and 33° C respectively) by switching eggs from 29° C to 33° C and vice versa at timed interval throughout incubation. Compared to Alligator mississippiensis the duration of TSP was longer, and the onset of TSP was at an earlier stage of incubation.


Genetics ◽  
1994 ◽  
Vol 137 (4) ◽  
pp. 999-1018 ◽  
Author(s):  
D R Hsu ◽  
B J Meyer

Abstract The need to regulate X chromosome expression in Caenorhabditis elegans arises as a consequence of the primary sex-determining signal, the X/A ratio (the ratio of X chromosomes to sets of autosomes), which directs 1X@A animals to develop as males and 2X/2A animals to develop as hermaphrodites. C. elegans possesses a dosage compensation mechanism that equalizes X chromosome expression between the two sexes despite their disparity in X chromosome dosage. Previous genetic analysis led to the identification of four autosomal genes, dpy-21, dpy-26, dpy-27 and dpy-28, whose products are essential in XX animals for proper dosage compensation, but not for sex determination. We report the identification and characterization of dpy-30, an essential component of the dosage compensation machinery. Putative null mutations in dpy-30 disrupt dosage compensation and cause a severe maternal-effect, XX-specific lethality. Rare survivors of the dpy-30 lethality are dumpy and express their X-linked genes at higher than wild-type levels. These dpy-30 mutant phenotypes superficially resemble those caused by mutations in dpy-26, dpy-27 and dpy-28; however, detailed phenotypic analysis reveals important differences that distinguish dpy-30 from these genes. In contrast to the XX-specific lethality caused by mutations in the other dpy genes, the XX-specific lethality caused by dpy-30 mutations is completely penetrant and temperature sensitive. In addition, unlike the other genes, dpy-30 is required for the normal development of XO animals. Although dpy-30 mutations do not significantly affect the viability of XO animals, they do cause them to be developmentally delayed and to possess numerous morphological and behavioral abnormalities. Finally, dpy-30 mutations can dramatically influence the choice of sexual fate in animals with an ambiguous sexual identity, despite having no apparent effect on the sexual phenotype of otherwise wild-type animals. Paradoxically, depending on the genetic background, dpy-30 mutations cause either masculinization or feminization, thus revealing the complex regulatory relationship between the sex determination and dosage compensation processes. The novel phenotypes caused by dpy-30 mutations suggest that in addition to acting in the dosage compensation process, dpy-30 may play a more general role in the development of both XX and XO animals.


Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 1071-1087 ◽  
Author(s):  
G. Garriga ◽  
C. Desai ◽  
H.R. Horvitz

The two serotonergic HSN motor neurons of the nematode Caenorhabditis elegans innervate the vulval muscles and stimulate egg laying by hermaphrodites. By analyzing mutant and laser-operated animals, we find that both epithelial cells of the developing vulva and axons of the ventral nerve cord are required for HSN axonal guidance. Vulval precursor cells help guide the growth cone of the emerging HSN axon to the ventral nerve cord. Vulval cells also cause the two HSN axons to join the ventral nerve cord in two separate fascicles and to defasciculate from the ventral nerve cord and branch at the vulva. The axons of either the PVP or PVQ neurons are also necessary for the HSN axons to run in two separate fascicles within the ventral nerve cord. Our observations indicate that the outgrowth of the HSN axon is controlled in multiple ways by both neuronal and nonneuronal cells.


1983 ◽  
Vol 96 (6) ◽  
pp. 1592-1600 ◽  
Author(s):  
T R Manney ◽  
P Jackson ◽  
J Meade

Two mutants of Saccharomyces cerevisiae have been isolated from normal haploid MAT alpha strains and characterized as having temperature-sensitive, pleiotropic phenotypes for functions associated with mating. At the permissive temperature, 23 degrees C, they were found to behave as normal MAT alpha haploids with respect to mating efficiency, sporulation in diploids formed with MAT a strains, secretion of alpha-factor, and failure to secrete the MATa-specific products, a-factor and Barrier. At higher temperatures they were found to decline in mating and sporulation efficiency and to express the a-specific functions. Genetic analysis established that one of these mutants, PE34, carries a temperature-sensitive allele of the MAT alpha 2 gene and that the other, PD7, carries a temperature-sensitive allele of the TUP1 gene.


Sign in / Sign up

Export Citation Format

Share Document