Cell interactions control the direction of outgrowth, branching and fasciculation of the HSN axons of Caenorhabditis elegans

Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 1071-1087 ◽  
Author(s):  
G. Garriga ◽  
C. Desai ◽  
H.R. Horvitz

The two serotonergic HSN motor neurons of the nematode Caenorhabditis elegans innervate the vulval muscles and stimulate egg laying by hermaphrodites. By analyzing mutant and laser-operated animals, we find that both epithelial cells of the developing vulva and axons of the ventral nerve cord are required for HSN axonal guidance. Vulval precursor cells help guide the growth cone of the emerging HSN axon to the ventral nerve cord. Vulval cells also cause the two HSN axons to join the ventral nerve cord in two separate fascicles and to defasciculate from the ventral nerve cord and branch at the vulva. The axons of either the PVP or PVQ neurons are also necessary for the HSN axons to run in two separate fascicles within the ventral nerve cord. Our observations indicate that the outgrowth of the HSN axon is controlled in multiple ways by both neuronal and nonneuronal cells.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Oleg Tolstenkov ◽  
Petrus Van der Auwera ◽  
Wagner Steuer Costa ◽  
Olga Bazhanova ◽  
Tim M Gemeinhardt ◽  
...  

Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2877-2886 ◽  
Author(s):  
D.M. Miller ◽  
C.J. Niemeyer

In the nematode, Caenorhabditis elegans, VA and VB motor neurons arise from a common precursor cell but adopt different morphologies and synapse with separate sets of interneurons in the ventral nerve cord. A mutation that inactivates the unc-4 homeodomain gene causes VA motor neurons to assume the VB pattern of synaptic input while retaining normal axonal polarity and output; the disconnection of VA motor neurons from their usual presynaptic partners blocks backward locomotion. We show that expression of a functional unc-4-beta-galactosidase chimeric protein in VA motor neurons restores wild-type movement to an unc-4 mutant. We propose that unc-4 controls a differentiated characteristic of the VA motor neurons that distinguishes them from their VB sisters, thus dictating recognition by the appropriate interneurons. Our results show that synaptic choice can be controlled at the level of transcription in the post-synaptic neuron and identify a homeoprotein that defines a subset of cell-specific traits required for this choice.


2018 ◽  
Author(s):  
Oleg Tolstenkov ◽  
Petrus Van der Auwera ◽  
Jana F. Liewald ◽  
Wagner Steuer Costa ◽  
Olga Bazhanova ◽  
...  

SummaryInvertebrate nervous systems are valuable models for fundamental principles of the control of behavior. Ventral nerve cord (VNC) motor neurons in Caenorhabditis elegans represent one of the best studied locomotor circuits, with known connectivity and functional information about most of the involved neuron classes. However, for one of those, the AS motor neurons (AS MNs), no physiological data is available. Combining specific expression and selective illumination, we precisely targeted AS MNs by optogenetics and addressed their role in the locomotion circuit. After photostimulation, AS MNs induce currents in post-synaptic body wall muscles (BWMs), exhibiting an initial asymmetry of excitatory output. This may facilitate complex regulatory motifs for adjusting direction during navigation. By behavioral and photo-inhibition experiments, we show that AS MNs contribute to propagation of the antero-posterior body wave during locomotion. By Ca2+-imaging in AS MNs and in their synaptic partners, we also reveal that AS MNs play a role in mediating forward and backward locomotion by integrating activity of premotor interneurons (PINs), as well as in coordination of the dorso-ventral body wave. AS MNs do not exhibit pacemaker properties, but potentially gate VNC central pattern generators (CPGs), as indicated by ceasing of locomotion when AS MNs are hyperpolarized. AS MNs provide positive feedback to the PIN AVA via gap junctions, a feature found also in other locomotion circuits. In sum, AS MNs have essential roles in coordinating locomotion, combining several functions, and emphasizing the compressed nature of the C. elegans nervous system in comparison to higher animals.HighlightsA class of motor neurons with unidentified function – AS cholinergic motor neurons - was characterized in C. elegans.AS neurons show asymmetry in both input and output and are specialized in coordination of dorso-ventral undulation bends.AS neurons mediate antero-posterior propagation of the undulatory body wave during locomotion.AS neurons integrate signals for forward and reverse locomotion from premotor interneurons and may gate ventral nerve cord central pattern generators (CPGs) via gap junctions.


Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1181-1192 ◽  
Author(s):  
Laura E Waggoner ◽  
Laura Anne Hardaker ◽  
Steven Golik ◽  
William R Schafer

Abstract Egg-laying behavior in the nematode Caenorhabditis elegans involves fluctuation between alternative behavioral states: an inactive state, during which eggs are retained in the uterus, and an active state, during which eggs are laid in bursts. We have found that the flp-1 gene, which encodes a group of structurally related neuropeptides, functions specifically to promote the switch from the inactive to the active egg-laying state. Recessive mutations in flp-1 caused a significant increase in the duration of the inactive phase, yet egg-laying within the active phase was normal. This pattern resembled that previously observed in mutants defective in the biosynthesis of serotonin, a neuromodulator implicated in induction of the active phase. Although flp-1 mutants were sensitive to stimulation of egg-laying by serotonin, the magnitude of their serotonin response was abnormally low. Thus, the flp-1-encoded peptides and serotonin function most likely function in concert to facilitate the onset of the active egg-laying phase. Interestingly, we observed that flp-1 is necessary for animals to down-regulate their rate of egg-laying in the absence of food. Because flp-1 is known to be expressed in interneurons that are postsynaptic to a variety of chemosensory cells, the FLP-1 peptides may function to regulate the activity of the egg-laying circuitry in response to sensory cues.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1611-1622 ◽  
Author(s):  
Go Shioi ◽  
Michinari Shoji ◽  
Masashi Nakamura ◽  
Takeshi Ishihara ◽  
Isao Katsura ◽  
...  

Abstract Using a pan-neuronal GFP marker, a morphological screen was performed to detect Caenorhabditis elegans larval lethal mutants with severely disorganized major nerve cords. We recovered and characterized 21 mutants that displayed displacement or detachment of the ventral nerve cord from the body wall (Ven: ventral cord abnormal). Six mutations defined three novel genetic loci: ven-1, ven-2, and ven-3. Fifteen mutations proved to be alleles of previously identified muscle attachment/positioning genes, mup-4, mua-1, mua-5, and mua-6. All the mutants also displayed muscle attachment/positioning defects characteristic of mua/mup mutants. The pan-neuronal GFP marker also revealed that mutants of other mua/mup loci, such as mup-1, mup-2, and mua-2, exhibited the Ven defect. The hypodermis, the excretory canal, and the gonad were morphologically abnormal in some of the mutants. The pleiotropic nature of the defects indicates that ven and mua/mup genes are required generally for the maintenance of attachment of tissues to the body wall in C. elegans.


2015 ◽  
Vol 26 (10) ◽  
pp. 1887-1900 ◽  
Author(s):  
Steven D. Garafalo ◽  
Eric S. Luth ◽  
Benjamin J. Moss ◽  
Michael I. Monteiro ◽  
Emily Malkin ◽  
...  

Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.


1999 ◽  
Vol 19 (16) ◽  
pp. 7048-7056 ◽  
Author(s):  
Yoo-Shick Lim ◽  
Smita Mallapur ◽  
Gautam Kao ◽  
Xing-Cong Ren ◽  
William G. Wadsworth

1987 ◽  
Vol 58 (3) ◽  
pp. 584-597 ◽  
Author(s):  
B. Mulloney ◽  
L. D. Acevedo ◽  
A. G. Bradbury

1. The swimmeret system can be excited by perfusing the neuropeptide proctolin through the isolated ventral nerve cord of the crayfish. Previously silent preparations begin to generate a characteristic motor pattern, the swimmeret rhythm, in the nerves that innervate the swimmerets. The response to proctolin is dose dependent and reversible. The threshold concentration of proctolin perfused through the ventral artery is approximately 10(-8) M. The EC50 is 1.6 X 10(-6) M. 2. Proctolin-induced motor patterns have periods and phases similar to those of spontaneously generated motor patterns. The durations of the bursts of impulses in power-stroke motor neurons generated in the presence of proctolin are, however, significantly longer than those that occur during spontaneous activity. 3. DL-Octopamine inhibits the swimmeret system, both when the system is spontaneously active and when it has been excited by proctolin. The inhibition by octopamine is dose dependent and reversible. The threshold for inhibition is approximately 10(-6) M, and the EC50 is approximately 5 X 10(-5) M. 4. Octopamine's effect is mimicked by its agonists, synephrine and norepinephrine. Synephrine has a lower threshold concentration than does octopamine, but norepinephrine is much less effective than octopamine. 5. Octopamine's inhibition is partially blocked by an antagonist, phentolamine. 6. Phentolamine also blocks inhibition of the swimmeret system by inhibitory command interneurons. This block is dose dependent and can be partially overcome by stimulating the command interneurons at higher frequencies. 7. Perfusion with 11 other suspected crustacean neurotransmitters and transmitter analogues did not similarly excite or inhibit the swimmeret system, so we suggest that proctolin and octopamine are transmitters used by the neurons that normally control expression of the swimmeret rhythm.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 741-753 ◽  
Author(s):  
D M Miller ◽  
C J Niemeyer ◽  
P Chitkara

Abstract The unc-4 gene of Caenorhabditis elegans encodes a homeodomain protein that defines synaptic input to ventral cord motor neurons. unc-4 mutants are unable to crawl backward because VA motor neurons are miswired with synaptic connections normally reserved for their sister cells, the VB motor neurons. These changes in connectivity are not accompanied by any visible effects upon neuronal morphology, which suggests that unc-4 regulates synaptic specificity but not axonal guidance or outgrowth. In an effort to identify other genes in the unc-4 pathway, we have devised a selection scheme for rare mutations that suppress the Unc-4 phenotype. We have isolated four, dominant, extragenic, allele-specific suppressors of unc-4(e2322ts), a temperature sensitive allele with a point mutation in the unc-4 homeodomain. Our data indicate that these suppressors are gain-of-function mutations in the previously identified unc-37 gene. We show that the loss-of-function mutation unc-37(e262) phenocopies the Unc-4 movement defect but does not prevent unc-4 expression or alter VA motor neuron morphology. These findings suggest that unc-37 functions with unc-4 to specify synaptic input to the VA motor neurons. We propose that unc-37 may be regulated by unc-4. Alternatively, unc-37 may encode a gene product that interacts with the unc-4 homeodomain.


Sign in / Sign up

Export Citation Format

Share Document