scholarly journals Interacting genes that affect microtubule function in Drosophila melanogaster: two classes of mutation revert the failure to complement between haync2 and mutations in tubulin genes.

Genetics ◽  
1990 ◽  
Vol 125 (1) ◽  
pp. 77-90
Author(s):  
C L Regan ◽  
M T Fuller

Abstract The recessive male sterile mutation haync2 of Drosophila melanogaster fails to complement certain beta 2-tubulin and alpha-tubulin mutations, suggesting that the haywire product plays a role in microtubule function, perhaps as a structural component of microtubules. The genetic interaction appears to require the presence of the aberrant product encoded by haync2, which may act as a structural poison. Based on this observation, we have isolated ten new mutations that revert the failure to complement between haync2 and B2tn. The revertants tested behaved as intragenic mutations of hay in recombination tests, and fell into two phenotypic classes, suggesting two functional domains of the hay gene product. Some revertants were hemizygous viable and less severe than haync2 in their recessive phenotype. These mutations might revert the poison by restoring the aberrant product encoded by the haync2 allele to more wild-type function. Most of the revertants were recessive lethal mutations, indicating that the hay gene product is essential for viability. These more extreme mutations could revert the poison by destroying the ability of the aberrant haywirenc2 product to interact structurally with microtubules. Flies heterozygous for the original haync2 allele and an extreme revertant show defects in both the structure and the function of the male meiotic spindle.

Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 961-973 ◽  
Author(s):  
L L Green ◽  
N Wolf ◽  
K L McDonald ◽  
M T Fuller

Abstract The mutant nc4 allele of whirligig (3-54.4) of Drosophila melanogaster fails to complement mutations in an alpha-tubulin locus, alpha 1t, mutations in a beta-tubulin locus, B2t, or a mutation in the haywire locus. However, wrl fails to map to any of the known alpha- or beta-tubulin genes. The extragenic failure to complement could indicate that the wrl product participates in structural interactions with microtubule proteins. The whirligig locus appears to be haploinsufficient for male fertility. Both a deficiency of wrl and possible loss of function alleles obtained by reverting the failure to complement between wrlnc4 and B2tn are dominant male sterile in a genetic background wild type for tubulin. The dominant male sterility of the revertant alleles is suppressed if the flies are also heterozygous for B2tn, for a deficiency of alpha 1t, or for the haync2 allele. These results suggest that it is not the absolute level of wrl gene product but its level relative to tubulin or microtubule function that is important for normal spermatogenesis. The phenotype of homozygous wrl mutants suggests that the whirligig product plays a role in postmeiotic spermatid differentiation, possibly in organizing the microtubules of the sperm flagellar axoneme. Flies homozygous for either wrlnc4 or revertant alleles are viable and female fertile but male sterile. Premeiotic and meiotic stages of spermatogenesis appear normal. However, in post-meiotic stages, flagellar axonemes show loss of the accessory microtubule on the B-subfiber of outer doublet microtubules, outer triplet instead of outer doublet microtubules, and missing central pair microtubules.


1989 ◽  
Vol 9 (3) ◽  
pp. 875-884 ◽  
Author(s):  
T S Hays ◽  
R Deuring ◽  
B Robertson ◽  
M Prout ◽  
M T Fuller

In this paper we demonstrate that failure to complement between mutations at separate loci can be used to identify genes that encode interacting structural proteins. A mutation (nc33) identified because it failed to complement mutant alleles of the gene encoding the testis-specific beta 2-tubulin of Drosophila melanogaster (B2t) did not map to the B2t locus. We show that this second-site noncomplementing mutation is a missense mutation in alpha-tubulin that results in substitution of methionine in place of valine at amino acid 177. Because alpha- and beta-tubulin form a heterodimer, our results suggest that the genetic interaction, failure to complement, is based on the structural interaction between the protein products of the two genes. Although the nc33 mutation failed to complement a null allele of B2t (B2tn), a deletion of the alpha-tubulin gene to which nc33 mapped complemented B2tn. Thus, the failure to complement appears to require the presence of the altered alpha-tubulin encoded by the nc33 allele, which may act as a structural poison when incorporated into either the tubulin heterodimer or microtubules.


1989 ◽  
Vol 9 (3) ◽  
pp. 875-884
Author(s):  
T S Hays ◽  
R Deuring ◽  
B Robertson ◽  
M Prout ◽  
M T Fuller

In this paper we demonstrate that failure to complement between mutations at separate loci can be used to identify genes that encode interacting structural proteins. A mutation (nc33) identified because it failed to complement mutant alleles of the gene encoding the testis-specific beta 2-tubulin of Drosophila melanogaster (B2t) did not map to the B2t locus. We show that this second-site noncomplementing mutation is a missense mutation in alpha-tubulin that results in substitution of methionine in place of valine at amino acid 177. Because alpha- and beta-tubulin form a heterodimer, our results suggest that the genetic interaction, failure to complement, is based on the structural interaction between the protein products of the two genes. Although the nc33 mutation failed to complement a null allele of B2t (B2tn), a deletion of the alpha-tubulin gene to which nc33 mapped complemented B2tn. Thus, the failure to complement appears to require the presence of the altered alpha-tubulin encoded by the nc33 allele, which may act as a structural poison when incorporated into either the tubulin heterodimer or microtubules.


Genetics ◽  
1990 ◽  
Vol 124 (2) ◽  
pp. 251-262 ◽  
Author(s):  
T Stearns ◽  
M A Hoyt ◽  
D Botstein

Abstract Three new genes affecting microtubule function in Saccharomyces cerevisiae were isolated by screening for mutants displaying supersensitivity to the antimicrotubule drug benomyl. Such mutants fall into six complementation groups: TUB1, TUB2 and TUB3, the three tubulin genes of yeast, and three new genes, which we have named CIN1, CIN2 and CIN4. Mutations in each of the CIN genes were also independently isolated by screening for mutants with increased rates of chromosome loss. Strains bearing mutations in the CIN genes are approximately tenfold more sensitive than wild type to both benomyl and to the related antimicrotubule drug, nocodazole. This phenotype is recessive for all alleles isolated. The CIN1, CIN2 and CIN4 genes were cloned by complementation of the benomyl-supersensitive phenotype. Null mutants of each of the genes are viable, and have phenotypes similar to those of the point mutants. Genetic evidence for the involvement of the CIN gene products in microtubule function comes from the observation that some tubulin mutations are suppressed by cin mutations, while other tubulin mutations are lethal in combination with cin mutations. Additional genetic experiments with cin mutants suggest that the three genes act together in the same pathway or structure to affect microtubule function.


Genetics ◽  
1990 ◽  
Vol 124 (4) ◽  
pp. 889-897
Author(s):  
S Y Tiong ◽  
D Nash

Abstract The Gart gene of Drosophila melanogaster is known, from molecular biological evidence, to encode a polypeptide that serves three enzymatic functions in purine biosynthesis. It is located in polytene chromosome region 27D. One mutation in the gene (ade3(1)) has been described previously. We report here forty new ethyl methanesulfonate-induced mutations selected aga!nst a synthetic deficiency of the region from 27C2-9 to ++28B3-4. The mutations were characterized cytogenetically and by complementation analysis. The analysis apparently identifies 12 simple complementation groups. In addition, two segments of the chromosome exhibit complex complementation behavior. The first, the 28A region, gave three recessive lethals and also contains three known visible mutants, spade (spd), Sternopleural (Sp) and wingless (wg); a complex pattern of genetic interaction in the region incorporates both the new and the previously known mutants. The second region is at 27D, where seven extreme semilethal mutations give a complex complementation pattern that also incorporates ade3(1). Since ade3(1) is defective in one of the enzymatic functions encoded in the Gart gene, we assume the other seven also affect the gene. The complexity of the complementation pattern presumably reflects the functional complexity of the gene product. The phenotypic effects of the mutants at 27D are very similar to those described for ade2 mutations, which also interrupt purine biosynthesis.


Development ◽  
1994 ◽  
Vol 120 (10) ◽  
pp. 2835-2845
Author(s):  
W.G. Damen ◽  
L.A. van Grunsven ◽  
A.E. van Loon

The expression of alpha- and beta-tubulin genes during the early development of the marine mollusk Patella vulgata has been investigated. From the 32-cell stage onwards, an enhanced expression of both alpha- and beta-tubulin mRNAs was detected in the primary trochoblasts. After one additional cleavage, these cells become cleavage-arrested and then form cilia. They are the first cells to differentiate during Patella development. Later, alpha- and beta-tubulin mRNA is also found in the accessory and secondary trochoblasts. Together these three cell-lines form the prototroch, the ciliated locomotory organ of the trochophore larva. The early and abundant expression of tubulin genes precede and accompany cilia formation in the trochoblasts and provides us with an excellent molecular differentiation marker for these cells. Apart from the trochoblasts, tubulin gene expression was also found in other cells at some stages. At the 88-cell stage, elevated tubulin mRNA levels were found around the large nucleus of the mesodermal stem cell 4d. In later stages, tubulin gene expression was detected in the cells that form the flagella of the apical tuft and in the refractive bodies. An alpha-tubulin gene was isolated and characterized. A lacZ fusion gene under control of the 5′ upstream region of this tubulin gene was microinjected into embryos at the two-cell stage. The reporter gene product was only detected in the three trochoblast cell-lines at the same time as tubulin genes were expressed in these cells. Reporter gene product was not detected in any other cells. Thus, this 5′ upstream region of this alpha-tubulin gene contains all the elements required for the correct spatiotemporal pattern of expression.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 278
Author(s):  
Pengcheng Wang ◽  
Fangyuan Yang ◽  
Zhuo Ma ◽  
Runzhi Zhang

Rice water weevil (RWW) is divided into two types of population, triploid parthenogenesis and diploid bisexual reproduction. In this study, we explored the meiosis of triploid parthenogenesis RWW (Shangzhuang Town, Haidian District, Beijing, China) by marking the chromosomes and microtubules of parthenogenetic RWW oocytes via immunostaining. The immunostaining results show that there is a canonical meiotic spindle formed in the triploid parthenogenetic RWW oocytes, but chromosomes segregate at only one pole, which means that there is a chromosomal unipolar division during the oogenesis of the parthenogenetic RWW. Furthermore, we cloned the conserved sequences of parthenogenetic RWW REC8 and Tws, and designed primers based on the parthenogenetic RWW sequence to detect expression patterns by quantitative PCR (Q-PCR). Q-PCR results indicate that the expression of REC8 and Tws in ovarian tissue of bisexual Drosophila melanogaster is 0.98 and 10,000.00 times parthenogenetic RWW, respectively (p < 0.01). The results show that Tws had low expression in parthenogenetic RWW ovarian tissue, and REC8 was expressed normally. Our study suggests that the chromosomal unipolar division and deletion of Tws may cause parthenogenesis in RWW.


1993 ◽  
Vol 13 (3) ◽  
pp. 1708-1718 ◽  
Author(s):  
M Schäfer ◽  
D Börsch ◽  
A Hülster ◽  
U Schäfer

We have analyzed a locus of Drosophila melanogaster located at 98C on chromosome 3, which contains two tandemly arranged genes, named Mst98Ca and Mst98Cb. They are two additional members of the Mst(3)CGP gene family by three criteria. (i) Both genes are exclusively transcribed in the male germ line. (ii) Both transcripts encode a protein with a high proportion of the repetitive motif Cys-Gly-Pro. (iii) Their expression is translationally controlled; while transcripts can be detected in diploid stages of spermatogenesis, association with polysomes can be shown only in haploid stages of sperm development. The genes differ markedly from the other members of the gene family in structure; they do not contain introns, they are of much larger size, and they have the Cys-Gly-Pro motifs clustered at the carboxy-terminal end of the encoded proteins. An antibody generated against the Mst98Ca protein recognizes both Mst98C proteins in D. melanogaster. In a male-sterile mutation in which spermiogenesis is blocked before individualization of sperm, both of these proteins are no longer synthesized. This finding provides proof of late translation for the Mst98C proteins and thereby independent proof of translational control of expression. Northern (RNA) and Western immunoblot analyses indicate the presence of homologous gene families in many other Drosophila species. The Mst98C proteins share sequence homology with proteins of the outer dense fibers in mammalian spermatozoa and can be localized to the sperm tail by immunofluorescence with an anti-Mst98Ca antibody.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Armin Schmidt ◽  
Gioacchino Palumbo ◽  
Maria P Bozzetti ◽  
Patrizia Tritto ◽  
Sergio Pimpinelli ◽  
...  

Abstract The sting mutation, caused by a P element inserted into polytene region 32D, was isolated by a screen for male sterile insertions in Drosophila melanogaster. This sterility is correlated with the presence of crystals in spermatocytes and spermatids that are structurally indistinguishable from those produced in males carrying a deficiency of the Y-linked crystal (cry) locus. In addition, their morphology is needle-like in Ste+ flies and star-shaped in Ste flies, once again as observed in cry– males. The sti mutation leads to meiotic drive of the sex chromosomes, and the strength of the phenomenon is correlated with the copy number of the repetitive Ste locus. The same correlation is also true for the penetrance of the male sterile mutation. A presumptive sti null allele results in male sterility and lethal maternal effect. The gene was cloned and shown to code for a putative protein that is 866 amino acids long. A C-terminal domain of 82 amino acids is identified that is well conserved in proteins from different organisms. The gene is expressed only in the germline of both sexes. The interaction of sting with the Ste locus can also be demonstrated at the molecular level. While an unprocessed 8-kb Ste primary transcript is expressed in wild-type males, in X/Y homozygous sti males, as in X/Y cry– males, a 0.7-kb mRNA is produced.


Sign in / Sign up

Export Citation Format

Share Document