scholarly journals Pseudoreversion analysis indicates a direct role of cell division genes in polar morphogenesis and differentiation in Caulobacter crescentus.

Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 623-630 ◽  
Author(s):  
J M Sommer ◽  
A Newton

Abstract A pseudoreversion analysis was used to examine the role of cell division genes in polar morphogenesis in Caulobacter crescentus. Extragenic suppressors of temperature sensitive mutations in pleC, a pleiotropic gene required for cell motility, formation of polar phi CbK bacteriophage receptors, and stalk formation, were isolated. These suppressors, which restored motility at 37 degrees C, simultaneously conferred a cold sensitive cell division phenotype and they were mapped to the three new cell division genes divJ, divL and divK. The cold-sensitive mutations in divL, and to a lesser extent divJ, exhibited a relatively narrow range of suppression. The cold-sensitive cell division mutation in divK, by contrast, suppressed all pleC mutations examined and behaved as a classical bypass suppressor. The direct role of this cell division gene in the regulation of motility is suggested by the observation that divK341 mapped to the same locus as pleD301, a pleiotropic mutation that prevents loss of motility and stalk formation. These results provide strong evidence that the cell division and developmental pathways are interconnected and they support our earlier conclusion that cell division is required for the regulation of polar morphogenesis and differentiation in C. crescentus.

Genetics ◽  
1982 ◽  
Vol 100 (4) ◽  
pp. 547-563 ◽  
Author(s):  
Don Moir ◽  
Sue E Stewart ◽  
Barbara C Osmond ◽  
David Botstein

ABSTRACT We isolated 18 independent recessive cold-sensitive cell-division-cycle (cdc) mutants of Saccharomyces cerevisiae, in nine complementation groups. Terminal phenotypes exhibited include medial nuclear division, cytokinesis, and a previously undescribed terminal phenotype consisting of cells with a single small bud and an undivided nucleus. Four of the cold-sensitive mutants proved to be alleles of CDC11, while the remaining mutants defined at least six new cell-division-cycle genes: CDC44, CDC45, CDC48, CDC49, CDC50 and CDC51.—Spontaneous revertants from cold-sensitivity of four of the medial nuclear division cs cdc mutants were screened for simultaneous acquisition of a temperature-sensitive phenotype. The temperature-sensitive revertants of four different cs cdc mutants carried single new mutations, called Sup/Ts to denote their dual phenotype: suppression of the cold-sensitivity and concomitant conditional lethality at 37°. Many of the Sup/Ts mutations exhibited a cell-division-cycle terminal phenotype at the high temperature, and they defined two new cdc genes (CDC46 and CDC47). Two cold-sensitive medial nuclear division cdc mutants representing two different cdc genes were suppressed by different Sup/Ts alleles of another gene which also bears a medial nuclear division function (CDC46). In addition, the cold-sensitive medial nuclear division cdc mutant csH80 was suppressed by a Sup/Ts mutation yielding an unbudded terminal phenotype with an undivided nucleus at the high temperature. This mutation was an allele of CDC32. These results suggest a pattern of interaction among cdc gene products and indicate that cdc gene proteins might act in the cell cycle as complex specific functional assemblies.


Genetics ◽  
1982 ◽  
Vol 100 (2) ◽  
pp. 175-184
Author(s):  
Susan K Dutcher ◽  
Leland H Hartwell

ABSTRACT Forty temperature-sensitive cell division cycle (cdc) mutants of Saccharomyces cerevisiae were examined for their ability to complete nuclear fusion during conjugation in crosses to a CDC parent strain at the restrictive temperature. Most of the cdc mutant alleles behaved as the CDC parent strain from which they were derived, in that zygotes produced predominantly diploid progeny with only a small fraction of zygotes giving rise to haploid progeny (cytoductants) that signalled a failure in nuclear fusion. However, cdc4 mutants exhibited a strong nuclear fusion (karyogamy) defect in crosses to a CDC parent and cdc28, cdc34 and cdc37 mutants exhibited a weak karyogamy defect. For all four mutants, the karyogamy defect and the cell cycle defect cosegregated, suggesting that both defects resulted from a single lesion for each of these cdc mutants. Therefore, the cdc 4, 28, 34 and 37 gene products are required in both cell division and karyogamy.


Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1573-1584
Author(s):  
Sarah Lea McGuire ◽  
Dana L Roe ◽  
Brett W Carter ◽  
Robert L Carter ◽  
Sean P Grace ◽  
...  

AbstractThe Aspergillus nidulans NIMXCDC2 protein kinase has been shown to be required for both the G2/M and G1/S transitions, and recent evidence has implicated a role for NIMXCDC2 in septation and conidiation. While much is understood of its G2/M function, little is known about the functions of NIMXCDC2 during G1/S, septation, and conidiophore development. In an attempt to better understand how NIMXCDC2 is involved in these processes, we have isolated four extragenic suppressors of the A. nidulans nimX2cdc2 temperature-sensitive mutation. Mutation of these suppressor genes, designated snxA-snxD for suppressor of nimX, affects nuclear division, septation, and conidiation. The cold-sensitive snxA1 mutation leads to arrest of nuclear division during G1 or early S. snxB1 causes hyperseptation in the hyphae and sensitivity to hydroxyurea, while snxC1 causes septation in the conidiophore stalk and aberrant conidiophore structure. snxD1 leads to slight septation defects and hydroxyurea sensitivity. The additional phenotypes that result from the suppressor mutations provide genetic evidence that NIMXCDC2 affects septation and conidiation in addition to nuclear division, and cloning and biochemical analysis of these will allow a better understanding of the role of NIMXCDC2 in these processes.


Genetics ◽  
1988 ◽  
Vol 118 (4) ◽  
pp. 609-617
Author(s):  
M Winey ◽  
M R Culbertson

Abstract Two unlinked mutations that alter the enzyme activity of tRNA-splicing endonuclease have been identified in yeast. The sen1-1 mutation, which maps on chromosome 12, causes temperature-sensitive growth, reduced in vitro endonuclease activity, and in vivo accumulation of unspliced pre-tRNAs. The sen2-1 mutation does not confer a detectable growth defect, but causes a temperature-dependent reduction of in vitro endonuclease activity. Pre-tRNAs do not accumulate in sen2-1 strains. The in vitro enzyme activities of sen1-1 and sen2-1 complement in extracts from a heterozygous diploid, but fail to complement in mixed extracts from separate sen1-1 and sen2-1 haploid strains. These results suggest a direct role for SEN gene products in the enzymatic removal of introns from tRNA that is distinct from the role of other products known to affect tRNA splicing.


1987 ◽  
Vol 7 (1) ◽  
pp. 504-511 ◽  
Author(s):  
J Hindley ◽  
G Phear ◽  
M Stein ◽  
D Beach

Sucl+ was originally identified as a DNA sequence that, at high copy number, rescued Schizosaccharomyces pombe strains carrying certain temperature-sensitive alleles of the cdc2 cell cycle control gene. We determined the nucleotide sequence of a 1,083-base-pair Sucl+ DNA fragment and S1 mapped its 866-nucleotide RNA transcript. The protein-coding sequence of the gene is interrupted by two intervening sequences of 115 and 51 base pairs. The predicted translational product of the gene is a protein of 13 kilodaltons. A chromosomal gene disruption of Sucl+ was constructed in a diploid S. pombe strain. Germinating spores carrying a null allele of the gene were capable of very limited cell division, following which many cells became highly elongated. The Sucl+ gene was also strongly overexpressed under the control of a heterologous S. pombe promoter. Overexpression of Sucl+ is not lethal but causes a division delay such that cells are approximately twice the normal length at division. These data suggest that Sucl+ encodes a protein which plays a direct role in the cell division cycle of S. pombe.


1977 ◽  
Vol 41 (1) ◽  
pp. 97-107
Author(s):  
Toshiaki Kudo ◽  
Kazuo Nagai ◽  
Gakuzo Tamura

2001 ◽  
Vol 153 (2) ◽  
pp. 381-396 ◽  
Author(s):  
John Kim ◽  
Yoshiaki Kamada ◽  
Per E. Stromhaug ◽  
Ju Guan ◽  
Ann Hefner-Gravink ◽  
...  

Three overlapping pathways mediate the transport of cytoplasmic material to the vacuole in Saccharomyces cerevisiae. The cytoplasm to vacuole targeting (Cvt) pathway transports the vacuolar hydrolase, aminopeptidase I (API), whereas pexophagy mediates the delivery of excess peroxisomes for degradation. Both the Cvt and pexophagy pathways are selective processes that specifically recognize their cargo. In contrast, macroautophagy nonselectively transports bulk cytosol to the vacuole for recycling. Most of the import machinery characterized thus far is required for all three modes of transport. However, unique features of each pathway dictate the requirement for additional components that differentiate these pathways from one another, including at the step of specific cargo selection. We have identified Cvt9 and its Pichia pastoris counterpart Gsa9. In S. cerevisiae, Cvt9 is required for the selective delivery of precursor API (prAPI) to the vacuole by the Cvt pathway and the targeted degradation of peroxisomes by pexophagy. In P. pastoris, Gsa9 is required for glucose-induced pexophagy. Significantly, neither Cvt9 nor Gsa9 is required for starvation-induced nonselective transport of bulk cytoplasmic cargo by macroautophagy. The deletion of CVT9 destabilizes the binding of prAPI to the membrane and analysis of a cvt9 temperature-sensitive mutant supports a direct role of Cvt9 in transport vesicle formation. Cvt9 oligomers peripherally associate with a novel, perivacuolar membrane compartment and interact with Apg1, a Ser/Thr kinase essential for both the Cvt pathway and autophagy. In P. pastoris Gsa9 is recruited to concentrated regions on the vacuole membrane that contact peroxisomes in the process of being engulfed by pexophagy. These biochemical and morphological results demonstrate that Cvt9 and the P. pastoris homologue Gsa9 may function at the step of selective cargo sequestration.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Romain Grangeon ◽  
John Zupan ◽  
Yeonji Jeon ◽  
Patricia C. Zambryski

ABSTRACTAgrobacterium tumefaciensgrows by addition of peptidoglycan (PG) at one pole of the bacterium. During the cell cycle, the cell needs to maintain two different developmental programs, one at the growth pole and another at the inert old pole. Proteins involved in this process are not yet well characterized. To further characterize the role of pole-organizing proteinA. tumefaciensPopZ (PopZAt), we created deletions of the five PopZAtdomains and assayed their localization. In addition, we created apopZAtdeletion strain (ΔpopZAt) that exhibited growth and cell division defects with ectopic growth poles and minicells, but the strain is unstable. To overcome the genetic instability, we created an inducible PopZAtstrain by replacing the native ribosome binding site with a riboswitch. Cultivated in a medium without the inducer theophylline, the cells look like ΔpopZAtcells, with a branching and minicell phenotype. Adding theophylline restores the wild-type (WT) cell shape. Localization experiments in the depleted strain showed that the domain enriched in proline, aspartate, and glutamate likely functions in growth pole targeting. Helical domains H3 and H4 together also mediate polar localization, but only in the presence of the WT protein, suggesting that the H3 and H4 domains multimerize with WT PopZAt, to stabilize growth pole accumulation of PopZAt.IMPORTANCEAgrobacterium tumefaciensis a rod-shaped bacterium that grows by addition of PG at only one pole. The factors involved in maintaining cell asymmetry during the cell cycle with an inert old pole and a growing new pole are not well understood. Here we investigate the role of PopZAt, a homologue ofCaulobacter crescentusPopZ (PopZCc), a protein essential in many aspects of pole identity inC. crescentus. We report that the loss of PopZAtleads to the appearance of branching cells, minicells, and overall growth defects. As many plant and animal pathogens also employ polar growth, understanding this process inA. tumefaciensmay lead to the development of new strategies to prevent the proliferation of these pathogens. In addition, studies ofA. tumefacienswill provide new insights into the evolution of the genetic networks that regulate bacterial polar growth and cell division.


Sign in / Sign up

Export Citation Format

Share Document