scholarly journals Molecular Cloning and Tissue-Specific Expression of the mutator2 Gene (mu2) in Drosophila melanogaster

Genetics ◽  
1999 ◽  
Vol 152 (3) ◽  
pp. 1025-1035
Author(s):  
Armin Kasravi ◽  
Marika F Walter ◽  
Stephanie Brand ◽  
James M Mason ◽  
Harald Biessmann

Abstract We present here the molecular cloning and characterization of the mutator2 (mu2) gene of Drosophila melanogaster together with further genetic analyses of its mutant phenotype. mu2 functions in oogenesis during meiotic recombination, during repair of radiation damage in mature oocytes, and in proliferating somatic cells, where mu2 mutations cause an increase in somatic recombination. Our data show that mu2 represents a novel component in the processing of double strand breaks (DSBs) in female meiosis. mu2 does not code for a DNA repair enzyme because mu2 mutants are not hypersensitive to DSB-inducing agents. We have mapped and cloned the mu2 gene and rescued the mu2 phenotype by germ-line transformation with genomic DNA fragments containing the mu2 gene. Sequencing its cDNA demonstrates that mu2 encodes a novel 139-kD protein, which is highly basic in the carboxy half and carries three nuclear localization signals and a helix-loop-helix domain. Consistent with the sex-specific mutant phenotype, the gene is expressed in ovaries but not in testes. During oogenesis its RNA is rapidly transported from the nurse cells into the oocyte where it accumulates specifically at the anterior margin. Expression is also prominent in diploid proliferating cells of larval somatic tissues. Our genetic and molecular data are consistent with the model that mu2 encodes a structural component of the oocyte nucleus. The MU2 protein may be involved in controlling chromatin structure and thus may influence the processing of DNA DSBs.

1990 ◽  
Vol 111 (3) ◽  
pp. 817-828 ◽  
Author(s):  
D Pauli ◽  
C H Tonka ◽  
A Tissieres ◽  
A P Arrigo

The alpha-crystallin-related heat shock (stress) protein hsp27 is expressed in absence of heat shock during Drosophila melanogaster development. Here, we describe the tissue distribution of this protein using an immunoaffinity-purified antibody. In embryos, hsp27 translated from maternal RNA is uniformly distributed, except in the yolk. During the first, second, and early third larval stages, hsp27 expression is restricted to the brain and the gonads. These tissues are characterized by a high level of proliferating cells. In late third instar larvae and early pupae, in addition to the central nervous system and the gonads, all the imaginal discs synthesize hsp27. The disc expression seems restricted to the beginning of their differentiation since it disappears during the second half of the pupal stage: no more hsp27 is observed in the disc-derived adult organs. In adults, hsp27 is still present in some regions of the central nervous system, and is also expressed in the male and female germ lines where it accumulates in mature sperm and oocytes. The transcript and the protein accumulate in oocytes since the onset of vitellogenesis with a uniform distribution similar to that found in embryos. The adult germ lines transcribe hsp27 gene while no transcript is detected in the late pupal and adult brain. These results suggest multiple roles of hsp27 during Drosophila development which may be related to both the proliferative and differentiated states of the tissues.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 505-518 ◽  
Author(s):  
E Knust ◽  
H Schrons ◽  
F Grawe ◽  
J A Campos-Ortega

Abstract Enhancer of split [E(spl)] is one of the neurogenic loci of Drosophila and, as such, is required for normal segregation of neural and epidermal cell progenitors. Genetic observations indicate that the E(spl) locus is in fact a gene complex comprising a cluster of related genes and that other genes of the region are also required for normal early neurogenesis. Three of the genes of the complex were known to encode helix-loop-helix (HLH) proteins and to be transcribed in nearly identical patterns. Here, we show that four other genes in the vicinity also encode HLH proteins and, during neuroblast segregation, three of them are expressed in the same pattern. We show by germ-line transformation that these three genes are also necessary to allow epidermal development of the neuroectodermal cells.


1987 ◽  
Vol 7 (5) ◽  
pp. 1710-1715
Author(s):  
E Otto ◽  
J M Allen ◽  
J E Young ◽  
R D Palmiter ◽  
G Maroni

Cloned fragments of DNA including the Drosophila melanogaster metallothionein gene Mtn and different amounts of 5' flanking sequences were introduced into flies by P-element-mediated germ line transformation. Comparison of RNA levels in different transformants revealed that metal-regulated and tissue-specific expression of Mtn requires no more than 373 base pairs upstream of the initiation site of transcription. Transformants having an additional, transcribed copy of Mtn could tolerate increased concentrations of cadmium, indicating that Mtn expression is directly related to this phenotype. In separate experiments, these D. melanogaster promoter sequences were fused to the coding sequences of the herpes simplex virus thymidine kinase (TK) gene. After transfection of this fusion into baby hamster kidney cells, increases in TK activity and accumulation of TK RNA were inducible by metals. A series of 5' and 3' deletions showed that D. melanogaster sequences from -130 to -6 were sufficient to confer metal-regulated expression to the TK gene. The function of the D. melanogaster metallothionein promoter in mammalian cells indicates that the mechanism controlling metal regulation is evolutionarily conserved.


Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 599-610
Author(s):  
C Y Wu ◽  
J Mote ◽  
M D Brennan

Abstract Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed.


1992 ◽  
Vol 12 (11) ◽  
pp. 5111-5122
Author(s):  
M Agnel ◽  
L Röder ◽  
C Vola ◽  
R Griffin-Shea

The rotund (rn) locus of Drosophila melanogaster at cytogenetic position 84D3,4 has been isolated and cloned on the basis of the mutant phenotype: an absence of structures in the subdistal regions of the appendages. The shortened appendages are the consequence of a localized cell death in the imaginal discs, precursors of the adult appendages. Physical characterization of the rn locus has demonstrated that it is relatively large, occupying a minimum of 50 kb. There are two major transcripts of 1.7 kb (m1.7) and 5.3 kb (m5.3). We present here the sequence analysis of m1.7 and its putative product, rnprot1.7, and show that rnprot1.7 is similar to the product of the human n-chimaerin gene, which is expressed in brain and testes. Recently, the GAP activity of n-chimaerin was demonstrated and shown to be specific for the Rac subfamily of the Ras oncoproteins. The Rac proteins have been implicated in the regulation of secretory processes. In addition to being expressed in the imaginal discs, the m1.7 racGAP transcript was detected in developmentally specific germ line cells of the testes, the primary spermatocytes.


Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 729-735 ◽  
Author(s):  
P. Lachaume ◽  
K. Bouhidel ◽  
M. Mesure ◽  
H. Pinon

The I factor is a functional non-viral retrotransposon, or LINE, from Drosophila melanogaster. Its mobility is associated with the I-R hybrid dysgenesis. In order to study the expression pattern of this LINE in vivo, a translational fusion between the first ORF of the I factor and the lacZ gene of Escherichia coli has been carried out and introduced in the genome of reactive (R) flies. Homozygous transgenic Drosophila lines have been established and analysed. ORF1 expression is limited to germ-line cells (nurse cells and oocyte) between stage 2 and 10 of oogenesis. No somatic expression is found. Position effects may limit the level of expression of a given transgene but do not modify its basic pattern of expression during the development of the fly. This reproducible control demonstrates both that I factor is driven by its own promoter, probably the internal one suggested by Mizrokhi et al. (Mizrokhi, L.J., Georgevia, S.G. and Ilying, Y.V. (1988). Cell 54, 685–691), and that tissue-specific regulatory sequences are present in the 5′ untranslated part of the I factor. The nuclear localization of the fusion protein reveals the presence of nuclear localization signals (NLS) in the ORF1-encoded protein correlating with the possible structural and/or regulatory role of this protein. This expression is restricted to dysgenic and reactive females, and is similar in the two conditions. All the results obtained in this work suggest that I factor transposition occurs as a meiotic event, between stage 2 and 10 of the oogenesis and is regulated at the transcriptional level. It also appears that our transgene is an efficient marker to follow I factor expression.


1992 ◽  
Vol 12 (11) ◽  
pp. 5111-5122 ◽  
Author(s):  
M Agnel ◽  
L Röder ◽  
C Vola ◽  
R Griffin-Shea

The rotund (rn) locus of Drosophila melanogaster at cytogenetic position 84D3,4 has been isolated and cloned on the basis of the mutant phenotype: an absence of structures in the subdistal regions of the appendages. The shortened appendages are the consequence of a localized cell death in the imaginal discs, precursors of the adult appendages. Physical characterization of the rn locus has demonstrated that it is relatively large, occupying a minimum of 50 kb. There are two major transcripts of 1.7 kb (m1.7) and 5.3 kb (m5.3). We present here the sequence analysis of m1.7 and its putative product, rnprot1.7, and show that rnprot1.7 is similar to the product of the human n-chimaerin gene, which is expressed in brain and testes. Recently, the GAP activity of n-chimaerin was demonstrated and shown to be specific for the Rac subfamily of the Ras oncoproteins. The Rac proteins have been implicated in the regulation of secretory processes. In addition to being expressed in the imaginal discs, the m1.7 racGAP transcript was detected in developmentally specific germ line cells of the testes, the primary spermatocytes.


1986 ◽  
Vol 83 (3) ◽  
pp. 701-705 ◽  
Author(s):  
P. H. Gunaratne ◽  
A. Mansukhani ◽  
S. E. Lipari ◽  
H. C. Liou ◽  
D. W. Martindale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document