scholarly journals Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila.

Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1473-1481 ◽  
Author(s):  
J Liu ◽  
K Song ◽  
M F Wolfner

Abstract The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutants alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that YA function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function and that YA might interact with itself either directly or indirectly.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yasunao Kamikawa ◽  
Atsushi Saito ◽  
Koji Matsuhisa ◽  
Masayuki Kaneko ◽  
Rie Asada ◽  
...  

AbstractThe nuclear envelope (NE) safeguards the genome and is pivotal for regulating genome activity as the structural scaffold of higher-order chromatin organization. NE had been thought as the stable during the interphase of cell cycle. However, recent studies have revealed that the NE can be damaged by various stresses such as mechanical stress and cellular senescence. These types of stresses are called NE stress. It has been proposed that NE stress is closely related to cellular dysfunctions such as genome instability and cell death. Here, we found that an endoplasmic reticulum (ER)-resident transmembrane transcription factor, OASIS, accumulates at damaged NE. Notably, the major components of nuclear lamina, Lamin proteins were depleted at the NE where OASIS accumulates. We previously demonstrated that OASIS is cleaved at the membrane domain in response to ER stress. In contrast, OASIS accumulates as the full-length form to damaged NE in response to NE stress. The accumulation to damaged NE is specific for OASIS among OASIS family members. Intriguingly, OASIS colocalizes with the components of linker of nucleoskeleton and cytoskeleton complexes, SUN2 and Nesprin-2 at the damaged NE. OASIS partially colocalizes with BAF, LEM domain proteins, and a component of ESCRT III, which are involved in the repair of ruptured NE. Furthermore, OASIS suppresses DNA damage induced by NE stress and restores nuclear deformation under NE stress conditions. Our findings reveal a novel NE stress response pathway mediated by OASIS.


2013 ◽  
Vol 1 (6) ◽  
pp. 532-544 ◽  
Author(s):  
Amar M. Singh ◽  
James Chappell ◽  
Robert Trost ◽  
Li Lin ◽  
Tao Wang ◽  
...  

1993 ◽  
Vol 105 (3) ◽  
pp. 711-720 ◽  
Author(s):  
G. Maldonado-Codina ◽  
S. Llamazares ◽  
D.M. Glover

Cells of Drosophila embryos that are subjected to a 37 degrees C temperature shock whilst undergoing the S-phase of cell cycle 14 arrest with their microtubules in an interphase-like state, and with nuclei showing unusual chromatin condensation. They do not recover from this state within a 30 minute period even though extensive gastrulation movements can occur. Cells of embryos heat shocked in G2-phase are delayed in interphase with high levels of cyclins A and B. Within ten minutes recovery from heat shock, cells enter mitosis throughout the embryo. The degradation of the mitotic cyclins A and B in these synchronised mitotic domains does not follow the normal timing, but is delayed. These findings point to a need for caution when interpreting experiments that use the heat shock promoter to study the expression of cell cycle control genes in Drosophila.


2015 ◽  
Vol 5 (3) ◽  
pp. 341-352 ◽  
Author(s):  
Julianna Bozler ◽  
Huy Q Nguyen ◽  
Gregory C Rogers ◽  
Giovanni Bosco

Abstract Although the nuclear envelope is known primarily for its role as a boundary between the nucleus and cytoplasm in eukaryotes, it plays a vital and dynamic role in many cellular processes. Studies of nuclear structure have revealed tissue-specific changes in nuclear envelope architecture, suggesting that its three-dimensional structure contributes to its functionality. Despite the importance of the nuclear envelope, the factors that regulate and maintain nuclear envelope shape remain largely unexplored. The nuclear envelope makes extensive and dynamic interactions with the underlying chromatin. Given this inexorable link between chromatin and the nuclear envelope, it is possible that local and global chromatin organization reciprocally impact nuclear envelope form and function. In this study, we use Drosophila salivary glands to show that the three-dimensional structure of the nuclear envelope can be altered with condensin II-mediated chromatin condensation. Both naturally occurring and engineered chromatin-envelope interactions are sufficient to allow chromatin compaction forces to drive distortions of the nuclear envelope. Weakening of the nuclear lamina further enhanced envelope remodeling, suggesting that envelope structure is capable of counterbalancing chromatin compaction forces. Our experiments reveal that the nucleoplasmic reticulum is born of the nuclear envelope and remains dynamic in that they can be reabsorbed into the nuclear envelope. We propose a model where inner nuclear envelope-chromatin tethers allow interphase chromosome movements to change nuclear envelope morphology. Therefore, interphase chromatin compaction may be a normal mechanism that reorganizes nuclear architecture, while under pathological conditions, such as laminopathies, compaction forces may contribute to defects in nuclear morphology.


1999 ◽  
Vol 147 (5) ◽  
pp. 913-920 ◽  
Author(s):  
Teresa Sullivan ◽  
Diana Escalante-Alcalde ◽  
Harshida Bhatt ◽  
Miriam Anver ◽  
Narayan Bhat ◽  
...  

The nuclear lamina is a protein meshwork lining the nucleoplasmic face of the inner nuclear membrane and represents an important determinant of interphase nuclear architecture. Its major components are the A- and B-type lamins. Whereas B-type lamins are found in all mammalian cells, A-type lamin expression is developmentally regulated. In the mouse, A-type lamins do not appear until midway through embryonic development, suggesting that these proteins may be involved in the regulation of terminal differentiation. Here we show that mice lacking A-type lamins develop to term with no overt abnormalities. However, their postnatal growth is severely retarded and is characterized by the appearance of muscular dystrophy. This phenotype is associated with ultrastructural perturbations to the nuclear envelope. These include the mislocalization of emerin, an inner nuclear membrane protein, defects in which are implicated in Emery-Dreifuss muscular dystrophy (EDMD), one of the three major X-linked dystrophies. Mice lacking the A-type lamins exhibit tissue-specific alterations to their nuclear envelope integrity and emerin distribution. In skeletal and cardiac muscles, this is manifest as a dystrophic condition related to EDMD.


2003 ◽  
Vol 23 (4) ◽  
pp. 1304-1315 ◽  
Author(s):  
Tohru Kimura ◽  
Chizuru Ito ◽  
Shoko Watanabe ◽  
Tohru Takahashi ◽  
Masahito Ikawa ◽  
...  

ABSTRACT A mouse homologue of the Drosophila melanogaster germ cell-less (mgcl-1) gene is expressed ubiquitously, and its gene product is localized to the nuclear envelope based on its binding to LAP2β (lamina-associated polypeptide 2β). To elucidate the role of mgcl-1, we analyzed two mutant mouse lines that lacked mgcl-1 gene expression. Abnormal nuclear morphologies that were probably due to impaired nuclear envelope integrity were observed in the liver, exocrine pancreas, and testis. In particular, functional abnormalities were observed in testis in which the highest expression of mgcl-1 was detected. Fertility was significantly impaired in mgcl-1-null male mice, probably as a result of severe morphological abnormalities in the sperm. Electron microscopic observations showed insufficient chromatin condensation and abnormal acrosome structures in mgcl-1-null sperm. In addition, the expression patterns of transition proteins and protamines, both of which are essential for chromatin remodeling during spermatogenesis, were aberrant. Considering that the first abnormality during the process of spermatogenesis was abnormal nuclear envelope structure in spermatocytes, the mgcl-1 gene product appears to be essential for appropriate nuclear-lamina organization, which in turn is essential for normal sperm morphogenesis and chromatin remodeling.


2021 ◽  
Author(s):  
Viola Introini ◽  
Gururaj Rao Kidiyoor ◽  
Giancarlo Porcella ◽  
Marco Foiani ◽  
Pietro Cicuta ◽  
...  

The cell nucleus plays a central role in several key cellular processes, including chromosome organisation, replication and transcription. Recent work intriguingly suggests an association between nuclear mechanics and cell-cycle progression, but many aspects of this connection remain unexplored. Here, by monitoring nuclear shape fluctuations at different cell cycle stages, we uncover increasing inward fluctuations in late G2 and early mitosis, which are initially transient, but develop into instabilities that culminate into nuclear-envelope breakdown in mitosis. Perturbation experiments and correlation analysis reveal an association of these processes with chromatin condensation. We propose that the contrasting forces between an extensile stress and centripetal pulling from chromatin condensation could link mechanically chromosome condensation and nuclear-envelope breakdown, the two main nuclear processes during mitosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sarayut Radapong ◽  
Kelvin Chan ◽  
Satyajit D. Sarker ◽  
Kenneth J. Ritchie

Oxyresveratrol (OXY) is a small molecule of phytochemical known as hydroxystilbenoids, which have been reported significantly important biological activities. The aim of this study was to elucidate the gene expression and biological pathways altered in MCF7, breast cancer cells. The cytotoxicity to different cancer cell lines was screened using MTT assay and then whole gene expression was elucidated using microarray. The pathways selected also validated by quantitative PCR analysis, fluorometric and western blot assay. A total of 686 genes were found to have altered mRNA expression levels of two-fold or more in the 50 μM OXY-treated group, while 2,338 genes were differentially expressed in the 100 µM-treated group. The relevant visualized global expression patterns of genes and pathways were generated. Apoptosis was activated through mitochondria-lost membrane potential, caspase-3 expression and chromatin condensation without DNA damage. G0/G1 and S phases of the cell cycle control were inhibited dose-dependently by the compound. Rad51 gene (DNA repair pathway) was significantly down-regulated (p < 0.0001). These results indicated that OXY moderated the key genes and pathways in MCF7 cells that could be developed as chemotherapy or chemo-sensitizing agent.


2014 ◽  
Vol 2 (3) ◽  
pp. 398 ◽  
Author(s):  
Amar M. Singh ◽  
James Chappell ◽  
Robert Trost ◽  
Li Lin ◽  
Tao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document