scholarly journals Effects of Single P-Element Insertions on Olfactory Behavior in Drosophila melanogaster

Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 293-301 ◽  
Author(s):  
Robert R H Anholt ◽  
Richard F Lyman ◽  
Trudy F C Mackay

Abstract Single P-element (P[lArB]) insertional mutagenesis of an isogenic strain was used to identify autosomal loci affecting odor-guided behavior of Drosophila melanogaster. The avoidance response to benzaldehyde of 379 homozygous P[lArB] element-containing insert lines was evaluated quantitatively. Fourteen smell impaired (smi) lines were identified in which P[lArB] element insertion caused different degrees of hyposmia in one or both sexes. The smi loci map to different cytological locations and probably are novel olfactory genes. Enhancer trap analysis of the smi lines indicates that expression of at least 10 smi genes is controlled by olfactory tissue-specific promoter/enhancer elements.

Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
D Smith ◽  
J Wohlgemuth ◽  
B R Calvi ◽  
I Franklin ◽  
W M Gelbart

Abstract P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.


Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 903-911 ◽  
Author(s):  
M.L. Winberg ◽  
S.E. Perez ◽  
H. Steller

We have examined the generation and development of glial cells in the first optic ganglion, the lamina, of Drosophila melanogaster. Previous work has shown that the growth of retinal axons into the developing optic lobes induces the terminal cell divisions that generate the lamina monopolar neurons. We investigated whether photoreceptor ingrowth also influences the development of lamina glial cells, using P element enhancer trap lines, genetic mosaics and birthdating analysis. Enhancer trap lines that mark the differentiating lamina glial cells were found to require retinal innervation for expression. In mutants with only a few photoreceptors, only the few glial cells near ingrowing axons expressed the marker. Genetic mosaic analysis indicates that the lamina neurons and glial cells are readily separable, suggesting that these are derived from distinct lineages. Additionally, BrdU pulse-chase experiments showed that the cell divisions that produce lamina glia, unlike those producing lamina neurons, are not spatially or temporally correlated with the retinal axon ingrowth. Finally, in mutants lacking photoreceptors, cell divisions in the glial lineage appeared normal. We conclude that the lamina glial cells derive from a lineage that is distinct from that of the L-neurons, that glia are generated independently of photoreceptor input, and that completion of the terminal glial differentiation program depends, directly or indirectly, on an inductive signal from photoreceptor axons.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1885-1891 ◽  
Author(s):  
Grażyna M Fedorowicz ◽  
James D Fry ◽  
Robert R H Anholt ◽  
Trudy F C Mackay

Abstract Odor-guided behavior is a polygenic trait determined by the concerted expression of multiple loci. Previously, P-element mutagenesis was used to identify single P[lArB] insertions, in a common isogenic background, with homozygous effects on olfactory behavior. Here, we have crossed 12 lines with these smell impaired (smi) mutations in a half-diallel design (excluding homozygous parental genotypes and reciprocal crosses) to produce all possible 66 doubly heterozygous hybrids with P[lArB] insertions at two distinct locations. The olfactory behavior of the transheterozygous progeny was measured using an assay that quantified the avoidance response to the repellent odorant benzaldehyde. There was significant variation in general combining abilities of avoidance scores among the smi mutants, indicating variation in heterozygous effects. Further, there was significant variation among specific combining abilities of each cross, indicating dependencies of heterozygous effects on the smi locus genotypes, i.e., epistasis. Significant epistatic interactions were identified for nine transheterozygote genotypes, involving 10 of the 12 smi loci. Eight of these loci form an interacting ensemble of genes that modulate expression of the behavioral phenotype. These observations illustrate the power of quantitative genetic analyses to detect subtle phenotypic effects and point to an extensive network of epistatic interactions among genes in the olfactory subgenome.


1988 ◽  
Vol 64 (6) ◽  
pp. 172-176 ◽  
Author(s):  
Motojiro YOSHIHARA ◽  
Etsuko TAKASU-ISHIKAWA ◽  
Yutaka SAKAI ◽  
Yoshiki HOTTA ◽  
Hitoshi OKAMOTO

Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 599-610
Author(s):  
C Y Wu ◽  
J Mote ◽  
M D Brennan

Abstract Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed.


Genetics ◽  
1995 ◽  
Vol 141 (3) ◽  
pp. 1061-1074 ◽  
Author(s):  
R R Roseman ◽  
E A Johnson ◽  
C K Rodesch ◽  
M Bjerke ◽  
R N Nagoshi ◽  
...  

Abstract P elements are widely used as insertional mutagens to tag genes, facilitating molecular cloning and analyses. We modified a P element so that it carried two copies of the suppressor of Hairy-wing [su(Hw)] binding regions isolated from the gypsy transposable element. This transposon was mobilized, and the genetic consequences of its insertion were analyzed. Gene expression can be altered by the su(Hw) protein as a result of blocking the interaction between enhancer/silencer elements and their promoter. These effects can occur over long distances and are general. Therefore, a composite transposon (SUPor-P for suppressor-P element) combines the mutagenic efficacy of the gypsy element with the controllable transposition of P elements. We show that, compared to standard P elements, this composite transposon causes an expanded repertoire of mutations and produces alleles that are suppressed by su(Hw) mutations. The large number of heterochromatic insertions obtained is unusual compared to other insertional mutagenesis procedures, indicating that the SUPor-P transposon may be useful for studying the structural and functional properties of heterochromatin.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 685-692 ◽  
Author(s):  
S J Newfeld ◽  
N T Takaesu

Abstract Our laboratory has contributed to the development of a genetic system based upon the hobo transposable element in Drosophila melanogaster. We recently reported that hobo, like the better-known P element, is capable of local transposition. In that study, we mobilized a hobo enhancer trap vector and generated two unique alleles of decapentaplegic (dpp), a transforming growth factor-β family member with numerous roles during development. Here we report a detailed study of one of those alleles (dppF11). To our knowledge, this is the first application of the hobo genetic system to understanding developmental processes. First, we demonstrate that lacZ expression from the dppF11 enhancer trap accurately reflects dpp mRNA accumulation in leading edge cells of the dorsal ectoderm. Then we show that combinatorial signaling by the Wingless (Wg) pathway, the Dpp pathway, and the transcriptional coactivator Nejire (CBP/p300) regulates dppF11 expression in these cells. Our analysis of dppF11 suggests a model for the integration of Wg and Dpp signals that may be applicable to other developmental systems. Our analysis also illustrates several new features of the hobo genetic system and highlights the value of hobo, as an alternative to P, in addressing developmental questions.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 71-80 ◽  
Author(s):  
T Török ◽  
G Tick ◽  
M Alvarado ◽  
I Kiss

Abstract A single P-element insertional mutagenesis experiment was carried out for the second chromosome of Drosophila melanogaster using the P-lacW transposon. Out of 15,475 insertions on the second chromosome, 2,308 lethal and 403 semilethal mutants (altogether 2,711) were recovered. After eliminating clusters, 72% of the mutants represent independent insertions. Some of the mutants with larval, prepupal or pupal lethal phases have a prolonged larval period and show gradual overgrowth of the imaginal discs, brain and/or the hematopoietic organs (lymph glands). In this paper, 16 overgrowth mutants are described. As revealed by in situ hybridization, none of the mutations corresponds to any of the previously known overgrowth mutations on the second chromosome.


1998 ◽  
Vol 72 (1) ◽  
pp. 19-24 ◽  
Author(s):  
DOROTHY B. CURRIE ◽  
TRUDY F. C. MACKAY ◽  
LINDA PARTRIDGE

A set of Drosophila melanogaster was generated, all derived from a common isogenic base stock and each with a single new P element insert on the second or third chromosome. The lines were scored for their body size, measured as thorax length. P inserts were associated with highly significant effects on body size, although the genotypes of the construct and of the control prevented deduction of the direction of mutant effects. In addition to mutant effects on the thorax length of both sexes, there were also highly significant sex-specific effects. Pleiotropic effects of inserts affecting body size on viability and bristle number, as ascertained in a separate study of these lines (Lyman et al., 1996), were weak. Insertional mutagenesis is potentially a powerful tool for investigating the genes involved in size-control in Drosophila, but the technique requires fine tuning for use on polygenic and fitness-related traits.


Sign in / Sign up

Export Citation Format

Share Document