scholarly journals The congested-like tracheae Gene of Drosophila melanogaster Encodes a Member of the Mitochondrial Carrier Family Required for Gas-Filling of the Tracheal System and Expansion of the Wings After Eclosion

Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1755-1768 ◽  
Author(s):  
Kirsten Hartenstein ◽  
Pradip Sinha ◽  
Arati Mishra ◽  
Heide Schenkel ◽  
Istvan Török ◽  
...  

Abstract A recessive semi-lethal mutation resulting from the insertion of a P-lacW transposon at the cytological position 23A on the polytene chromosomes of Drosophila melanogaster was found to affect the unfolding and expansion of the wings resulting in a loss of venation and a marked decrease in their size. Lethality was polyphasic with numerous animals dying during early larval development and displaying apparently collapsed tracheal trees. The gene was therefore designated as congested-like tracheae, or colt. The colt mutation resulted from the insertion of a P-lacW transposon within the coding region of a 1.4kb transcript. Wild-type function was restored by inducing a precise excision of the P-lacWtransposon, while a deletion of the colt locus, produced by imprecise excision of the P element, showed a phenotype similar to that of the original P insert. The colt gene consists of a single exon and encodes a protein of 306 amino acids made of three tandem repeats, each characterized by two predicted transmembrane segments and a loop domain. The COLT protein shares extensive homology with proteins in the mitochondrial carrier family and particularly with the DIF-1 protein of Caenwhabditis ekgans, which has been shown to be maternally required for embryonic tissue differentiation. Our analysis revealed that zygotic colt function is dispensable for normal embryonic morphogenesis but is required for gas-filling of the tracheal system at hatching time of the embryo and for normal epithelial morphogenesis of the wings.

Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 753-762
Author(s):  
Günther E Roth ◽  
Sigrid Wattler ◽  
Hartmut Bornschein ◽  
Michael Lehmann ◽  
Günter Korge

Abstract The Drosophila melanogaster gene Sgs-1 belongs to the secretion protein genes, which are coordinately expressed in salivary glands of third instar larvae. Earlier analysis had implied that Sgs-1 is located at the 25B2-3 puff. We cloned Sgs-1 from a YAC covering 25B2-3. Despite using a variety of vectors and Escherichia coli strains, subcloning from the YAC led to deletions within the Sgs-1 coding region. Analysis of clonable and unclonable sequences revealed that Sgs-1 mainly consists of 48-bp tandem repeats encoding a threonine-rich protein. The Sgs-1 inserts from single λ clones are heterogeneous in length, indicating that repeats are eliminated. By analyzing the expression of Sgs-1/lacZ fusions in transgenic flies, cis-regulatory elements of Sgs-1 were mapped to lie within 1 kb upstream of the transcriptional start site. Band shift assays revealed binding sites for the transcription factor fork head (FKH) and the factor secretion enhancer binding protein 3 (SEBP3) at positions that are functionally relevant. FKH and SEBP3 have been shown previously to be involved in the regulation of Sgs-3 and Sgs-4. Comparison of the levels of steady state RNA and of the transcription rates for Sgs-1 and Sgs-1/lacZ reporter genes indicates that Sgs-1 RNA is 100-fold more stable than Sgs-1/lacZ RNA. This has implications for the model of how Sgs transcripts accumulate in late third instar larvae.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 725-737 ◽  
Author(s):  
Gakuta Toba ◽  
Takashi Ohsako ◽  
Naomasa Miyata ◽  
Tsuyoshi Ohtsuka ◽  
Ki-Hyeon Seong ◽  
...  

Abstract We have constructed a P-element-based gene search vector for efficient detection of genes in Drosophila melanogaster. The vector contains two copies of the upstream activating sequence (UAS) enhancer adjacent to a core promoter, one copy near the terminal inverted repeats at each end of the vector, and oriented to direct transcription outward. Genes were detected on the basis of phenotypic changes caused by GAL4-dependent forced expression of vector-flanking DNA, and the transcripts were identified with reverse transcriptase PCR (RT-PCR) using the vector-specific primer and followed by direct sequencing. The system had a greater sensitivity than those already in use for gain-of-function screening: 64% of the vector insertion lines (394/613) showed phenotypes with forced expression of vector-flanking DNA, such as lethality or defects in adult structure. Molecular analysis of 170 randomly selected insertions with forced expression phenotypes revealed that 21% matched the sequences of cloned genes, and 18% matched reported expressed sequence tags (ESTs). Of the insertions in cloned genes, 83% were upstream of the protein-coding region. We discovered two new genes that showed sequence similarity to human genes, Ras-related protein 2 and microsomal glutathione S-transferase. The system can be useful as a tool for the functional mapping of the Drosophila genome.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Heike Rampelt ◽  
Iva Sucec ◽  
Beate Bersch ◽  
Patrick Horten ◽  
Inge Perschil ◽  
...  

Abstract Background The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. Results Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. Conclusions The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


1989 ◽  
Vol 53 (3) ◽  
pp. 163-171 ◽  
Author(s):  
K. A. Exley ◽  
P. Eggleston

SummaryThe frequency and distribution of P elements were investigated in the third chromosomes of two wild-type strains of Drosophila melanogaster using in situ hybridization of biotinylated probes to the polytene chromosomes. The relationship between these data and the extent of hybrid dysgenesis was determined through assays of egg production, egg hatchability (F2 embryo lethality), snw destabilization and male recombination along the third chromosome. The results suggest that P-element distribution, frequency and structure are all contributory factors in the regulation of hybrid dysgenesis. Texas 6 was shown consistently to be a stronger P strain than Texas 1, eliciting greater reductions in fertility, more extensive snw destabilization and higher frequencies of male recombination. Clustering of male recombination events, arising from pre-meiotic crossing over, was evident among the dysgenic progeny of each strain. Male recombination and snw destabilization were independently distributed among the dysgenic males studied, suggesting that these traits represent separate P-mediated functions. The third chromosome male recombination maps produced by the two strains differed significantly from each other and from the published female meiotic and polytene chromosome maps. Male recombination breakpoints were associated with the original distribution of P sequences in the two strains and the results suggest that this relationship may be closer for potentially complete P factors than for P sequences in general. An analysis of sub-lines derived from individual recombinant males revealed that chromosomal breakpoints could also be associated with novel insertions following P-element transposition.


1986 ◽  
Vol 6 (10) ◽  
pp. 3312-3319
Author(s):  
L L Searles ◽  
A L Greenleaf ◽  
W E Kemp ◽  
R A Voelker

Several P element insertion and deletion mutations near the 5' end of Drosophila melanogaster RpII215 have been examined by nucleotide sequencing. Two different sites of P element insertion, approximately 90 nucleotides apart, have been detected in this region of the gene. Therefore, including an additional site of P element insertion within the coding region, there are at least three distinct sites of P element insertion at RpII215. Both 5' sites are within a noncoding portion of transcribed sequences. The sequences of four revertants of one P element insertion mutation (D50) indicate that the P element is either precisely deleted or internally deleted to restore RpII215 activity. Partial internal deletions of the P element result in different RpII215 activity levels, which appear to depend on the specific sequences that remain after excision.


1999 ◽  
Vol 9 (2) ◽  
pp. 137-149 ◽  
Author(s):  
John Locke ◽  
Lynn Podemski ◽  
Ken Roy ◽  
David Pilgrim ◽  
Ross Hodgetts

Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing ∼5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus(ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met–hepatocyte growth factor receptor. The other cosmid contains only the two short 5′-most exons from thezinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the β-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome.


1992 ◽  
Vol 3 (6) ◽  
pp. 593-602 ◽  
Author(s):  
A van Daal ◽  
S C Elgin

H2AvD, a Drosophila melanogaster histone variant of the H2A.Z class, is encoded by a single copy gene in the 97CD region of the polytene chromosomes. Northern analysis shows that the transcript is expressed in adult females and is abundant throughout the first 12 h of embryogenesis but then decreases. The H2AvD protein is present at essentially constant levels in all developmental stages. Using D. melanogaster stocks with deletions in the 97CD region, we have localized the H2AvD gene to the 97D1-9 interval. A lethal mutation in this interval, l(3)810, exhibits a 311-base pair deletion in the H2AvD gene, which removes the second exon. P-element mediated transformation using a 4.1-kilobase fragment containing the H2AvD gene rescues the lethal phenotype. H2AvD is therefore both essential and continuously present, suggesting a requirement for its utilization, either to provide an alternative capability for nucleosome assembly or to generate an alternative nucleosome structure.


Genetics ◽  
1988 ◽  
Vol 120 (2) ◽  
pp. 475-484
Author(s):  
R Whetten ◽  
E Organ ◽  
P Krasney ◽  
D Cox-Foster ◽  
D Cavener

Abstract We have precisely mapped and sequenced the three 5' exons of the Drosophila melanogaster Gld gene and have identified the start sites for transcription and translation. The first exon is composed of 335 nucleotides and does not contain any putative translation start codons. The second exon is separated from the first exon by 8 kb and contains the Gld translation start codon. The inferred amino acid sequence of the amino terminus contains two unusual features: three tandem repeats of serine-alanine, and a relatively high density of cysteine residues. P element-mediated transformation experiments demonstrated that a 17.5-kb genomic fragment contains the functional and regulatory components of the Gld gene.


1986 ◽  
Vol 6 (10) ◽  
pp. 3312-3319 ◽  
Author(s):  
L L Searles ◽  
A L Greenleaf ◽  
W E Kemp ◽  
R A Voelker

Several P element insertion and deletion mutations near the 5' end of Drosophila melanogaster RpII215 have been examined by nucleotide sequencing. Two different sites of P element insertion, approximately 90 nucleotides apart, have been detected in this region of the gene. Therefore, including an additional site of P element insertion within the coding region, there are at least three distinct sites of P element insertion at RpII215. Both 5' sites are within a noncoding portion of transcribed sequences. The sequences of four revertants of one P element insertion mutation (D50) indicate that the P element is either precisely deleted or internally deleted to restore RpII215 activity. Partial internal deletions of the P element result in different RpII215 activity levels, which appear to depend on the specific sequences that remain after excision.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 676-685 ◽  
Author(s):  
N. J. Clegg ◽  
I. P. Whitehead ◽  
J. A. Williams ◽  
G. B. Spiegelman ◽  
T. A. Grigliatti

In fission yeast, the product of the cdc2 gene is required both for entry into S phase and mitosis. Homologs of cdc2 have been isolated from a number of metazoans, but in general they have not been amenable to genetic analysis. Here we describe P element transposon tagging of Cdc2 in Drosophila melanogaster and the analysis of 10 Cdc2 mutants. The recessive lethality of Cdc2P is associated with a P element located in the 5′ untranslated region of the gene. Seven other alleles have unique single base pair substitutions in the coding region of Cdc2. One allele, Cdc2B47, is mutated in the splice donor site of exon 1. Most mutations in Cdc2, including the presumptive null allele Cdc2B47, die at the pupal stage, suggesting that the maternally supplied Cdc2 gene product drives earlier cell divisions. The phenotypes of our mutants are consistent with a role for Cdc2 in cell proliferation; however, we did not observe any perturbation of the endoreduplication cycle associated with the acquisition of polyteny.Key words: Cdc2, Drosophila, mutations, sequence.


Sign in / Sign up

Export Citation Format

Share Document