Spatial and temporal expression of the I factor during oogenesis in Drosophila melanogaster

Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 729-735 ◽  
Author(s):  
P. Lachaume ◽  
K. Bouhidel ◽  
M. Mesure ◽  
H. Pinon

The I factor is a functional non-viral retrotransposon, or LINE, from Drosophila melanogaster. Its mobility is associated with the I-R hybrid dysgenesis. In order to study the expression pattern of this LINE in vivo, a translational fusion between the first ORF of the I factor and the lacZ gene of Escherichia coli has been carried out and introduced in the genome of reactive (R) flies. Homozygous transgenic Drosophila lines have been established and analysed. ORF1 expression is limited to germ-line cells (nurse cells and oocyte) between stage 2 and 10 of oogenesis. No somatic expression is found. Position effects may limit the level of expression of a given transgene but do not modify its basic pattern of expression during the development of the fly. This reproducible control demonstrates both that I factor is driven by its own promoter, probably the internal one suggested by Mizrokhi et al. (Mizrokhi, L.J., Georgevia, S.G. and Ilying, Y.V. (1988). Cell 54, 685–691), and that tissue-specific regulatory sequences are present in the 5′ untranslated part of the I factor. The nuclear localization of the fusion protein reveals the presence of nuclear localization signals (NLS) in the ORF1-encoded protein correlating with the possible structural and/or regulatory role of this protein. This expression is restricted to dysgenic and reactive females, and is similar in the two conditions. All the results obtained in this work suggest that I factor transposition occurs as a meiotic event, between stage 2 and 10 of the oogenesis and is regulated at the transcriptional level. It also appears that our transgene is an efficient marker to follow I factor expression.

1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


1998 ◽  
Vol 18 (4) ◽  
pp. 2382-2391 ◽  
Author(s):  
Stephanie J. Namciu ◽  
Karen B. Blochlinger ◽  
R. E. K. Fournier

ABSTRACT Germ line transformation of white−Drosophila embryos with P-element vectors containingwhite expression cassettes results in flies with different eye color phenotypes due to position effects at the sites of transgene insertion. These position effects can be cured by specific DNA elements, such as the Drosophila scs and scs′elements, that have insulator activity in vivo. We have used this system to determine whether human matrix attachment regions (MARs) can function as insulator elements in vivo. Two different human MARs, from the apolipoprotein B and α1-antitrypsin loci, insulatedwhite transgene expression from position effects inDrosophila melanogaster. Both elements reduced variability in transgene expression without enhancing levels of whitegene expression. In contrast, expression of whitetransgenes containing human DNA segments without matrix-binding activity was highly variable in Drosophila transformants. These data indicate that human MARs can function as insulator elements in vivo.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557 ◽  
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


1996 ◽  
Vol 16 (6) ◽  
pp. 2977-2986 ◽  
Author(s):  
C Antoniewski ◽  
B Mugat ◽  
F Delbac ◽  
J A Lepesant

The steroid hormone 20-hydroxyecdysone plays a key role in the induction and modulation of morphogenetic events throughout Drosophila development. Previous studies have shown that a heterodimeric nuclear receptor composed of the EcR and USP proteins mediates the action of the hormone at the transcriptional through binding to palindromic ecdysteroid mediates the action of the hormone at the transcriptional level through binding to palindromic ecdysteroid response elements (EcREs) such as those present in the promoter of the hsp27 gene or the fat body-specific enhancer of the Fbp1 gene. We show that in addition to palindromic EcREs, the EcR/USP heterodimer can bind in vitro with various affinities to direct repetitions of the motif AGGTCA separated by 1 to 5 nucleotides (DR1 to DR5), which are known to be target sites for vertebrate nuclear receptors. At variance with the receptors, EcR/USP was also found to bind to a DR0 direct repeat with no intervening nucleotide. In cell transformation assays, direct repeats DR0 to DR5 alone can render the minimum viral tk or Drosophila Fbp1 promoter responsive to 20-hydroxyecdysone, as does the palindromic hsp27 EcRE. In a transgenic assay, however, neither the palindromic hsp27 element nor direct repeat DR3 alone can make the Fbp1 minimal promoter responsive to premetamorphic ecdysteroid peaks. In contrast, DR0 and DR3 elements, when substituted for the natural palindromic EcRE in the context of the Fbp1 enhancer, can drive a strong fat body-specific ecdysteroid response in transgenic animals. These results demonstrate that directly repeated EcR/USP binding sites are as effective as palindromic EcREs in vivo. They also provide evidence that additional flanking regulatory sequences are crucially required to potentiate the hormonal response mediated by both types of elements and specify its spatial and temporal pattern.


2005 ◽  
Vol 280 (43) ◽  
pp. 36228-36236 ◽  
Author(s):  
Xin M. Luo ◽  
A. Catharine Ross

Synergistic actions between all-trans-retinoic acid (atRA) and interferon γ (IFNγ) on modulation of cellular functions have been reported both in vitro and in vivo. However, the mechanism of atRA-mediated regulation of IFNγ signaling is poorly understood. In this study, we have used the human lung epithelial cell line A549 to examine the effect of atRA on IFNγ-induced expression of IFN regulatory factor-1 (IRF-1), an important transcription factor involved in cell growth and apoptosis, differentiation, and antiviral and antibacterial immune responses. At least 4 h of pretreatment with atRA followed by suboptimal concentrations of IFNγ induced a faster, higher, and more stable expression of IRF-1 than IFNγ alone. Actinomycin D completely blocked the induction of IRF-1 by the combination, suggesting regulation at the transcriptional level. Further, we found that activation of signal transducer and activator of transcription-1 was induced more dramatically by atRA and IFNγ than by IFNγ alone. Expression of IFNγ receptor-1 on the cell surface was also increased upon atRA pretreatment. Experiments using receptor-selective retinoids revealed that ligands for retinoic acid receptor-α (RARα), including atRA, 9-cis-retinoic acid, and Am580, sequentially increased the levels of IFNγ receptor-1, activated signal transducer and activator of transcription-1, and IRF-1 and that an RARα antagonist was able to inhibit the effects of atRA and Am580. In addition, atRA pretreatment affected the transcriptional functions of IFNγ-induced IRF-1, increasing its nuclear localization and DNA binding activity as well as the transcript levels of IRF-1 target genes. These results suggest that atRA, an RARα ligand, regulates IFNγ-induced IRF-1 by affecting multiple components of the IFNγ signaling pathway, from the plasma membrane to the nuclear transcription factors.


2006 ◽  
Vol 175 (4) ◽  
pp. 579-593 ◽  
Author(s):  
Benjamin L. Timney ◽  
Jaclyn Tetenbaum-Novatt ◽  
Diana S. Agate ◽  
Rosemary Williams ◽  
Wenzhu Zhang ◽  
...  

Many cargoes destined for nuclear import carry nuclear localization signals that are recognized by karyopherins (Kaps). We present methods to quantitate import rates and measure Kap and cargo concentrations in single yeast cells in vivo, providing new insights into import kinetics. By systematically manipulating the amounts, types, and affinities of Kaps and cargos, we show that import rates in vivo are simply governed by the concentrations of Kaps and their cargo and the affinity between them. These rates fit to a straightforward pump–leak model for the import process. Unexpectedly, we deduced that the main limiting factor for import is the poor ability of Kaps and cargos to find each other in the cytoplasm in a background of overwhelming nonspecific competition, rather than other more obvious candidates such as the nuclear pore complex and Ran. It is likely that most of every import round is taken up by Kaps and nuclear localization signals sampling other cytoplasmic proteins as they locate each other in the cytoplasm.


2021 ◽  
Vol 320 (1) ◽  
pp. L29-L40
Author(s):  
Xinh-Xinh Nguyen ◽  
Tetsuya Nishimoto ◽  
Takahisa Takihara ◽  
Logan Mlakar ◽  
Amy D. Bradshaw ◽  
...  

Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Lysyl oxidase (LOX) is a copper-dependent amine oxidase whose primary function is the covalent crosslinking of collagens in the extracellular matrix (ECM). We investigated the role of LOX in the pathophysiology of SSc. LOX mRNA and protein levels were increased in lung fibroblasts of SSc patients compared with healthy controls and IPF patients. In vivo, bleomycin induced LOX mRNA expression in lung tissues, and LOX activity increased in the circulation of mice with pulmonary fibrosis, suggesting that circulating LOX parallels levels in lung tissues. Circulating levels of LOX were reduced upon amelioration of fibrosis with an antifibrotic peptide. LOX induced ECM production at the transcriptional level in lung fibroblasts, human lungs, and human skin maintained in organ culture. In vivo, LOX synergistically exacerbated fibrosis in bleomycin-treated mice. Further, LOX increased the production of interleukin (IL)-6, and the increase was mediated by LOX-induced c-Fos expression, the nuclear localization of c-Fos, and its engagement with the IL-6 promoter region. Our findings demonstrate that LOX expression and activity correlate with fibrosis in vitro, ex vivo, and in vivo. LOX induced ECM production via upregulation of IL-6 and nuclear localization of c-Fos. Thus, LOX has a direct pathogenic role in SSc-associated fibrosis that is independent of its crosslinking function. Our findings also suggest that measuring circulating LOX levels and activity can be used for monitoring response to antifibrotic therapy.


1987 ◽  
Vol 7 (3) ◽  
pp. 973-981
Author(s):  
E P Hoffman ◽  
S L Gerring ◽  
V G Corces

The effect of various types of DNA sequence alterations on the activity of the ovarian, ecdysterone, and heat-shock-responsive promoters of the Drosophila melanogaster hsp27 gene was studied by P element-mediated germ line transformation. Regions of DNA required for proper expression of the gene under these different conditions were identified. Wild-type levels of transcription during oogenesis are dependent on two elements respectively located within a 64-base-pair (bp) fragment in the transcribed untranslated region and between -227 and -958 bp upstream of the transcription start site. This ovarian expression is particularly sensitive to both chromosomal position effects and an increased distance between the distal upstream promoter element and the TATAA homology. The ecdysterone-mediated expression during metamorphosis is dependent on a 145-bp domain including the TATAA box and additional upstream sequences that augment transcription by two- to five-fold. Finally, sequences necessary for heat shock expression are located much further upstream from hsp27 than those previously found for hsp70, although basal expression was correlated with the presence of more proximal heat shock consensus sequences.


1985 ◽  
Vol 5 (8) ◽  
pp. 2009-2018
Author(s):  
D S Gilmour ◽  
J T Lis

We describe a method for examining the in vivo distribution of a protein on specific eucaryotic DNA sequences. In this method, proteins are cross-linked to DNA in intact cells, and the protein-DNA adducts are isolated by immunoprecipitation with antiserum against the protein. Characterization of the DNA cross-linked to the precipitated protein identifies the sequences with which the protein is associated in vivo. Here, we applied these methods to detect RNA polymerase II-DNA interactions in heat-shocked and untreated Drosophila melanogaster Schneider line 2 cells. The level of RNA polymerase II associated with several heat shock genes increased dramatically in response to heat shock, whereas the level associated with the copia genes decreased, indicating that both induction of heat shock gene expression and repression of the copia gene expression by heat shock occur at the transcriptional level. Low levels of RNA polymerase II were present on DNA outside of the transcription units, and for at least two genes, hsp83 and hsp26, RNA polymerase II initiated binding near the transcription start site. Moreover, for hsp70, the density of RNA polymerase II on sequences downstream of the polyadenylate addition site was much lower than that observed on the gene internal sequences. Examination of the amount of specific restriction fragments cross-linked to RNA polymerase II provides a means of detecting RNA polymerase II on individual members of multigene families. This analysis shows that RNA polymerase II is associated with only one of the two cytoplasmic actin genes.


Sign in / Sign up

Export Citation Format

Share Document