scholarly journals A Chromosome-Based Model for Estimating the Number of Conserved Segments Between Pairs of Species From Comparative Genetic Maps

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 323-332
Author(s):  
David Waddington ◽  
Anthea J Springbett ◽  
David W Burt

Abstract Comparative genetic maps of two species allow insights into the rearrangements of their genomes since divergence from a common ancestor. When the map details the positions of genes (or any set of orthologous DNA sequences) on chromosomes, syntenic blocks of one or more genes may be identified and used, with appropriate models, to estimate the number of chromosomal segments with conserved content conserved between species. We propose a model for the distribution of the lengths of unobserved segments on each chromosome that allows for widely differing chromosome lengths. The model uses as data either the counts of genes in a syntenic block or the distance between extreme members of a block, or both. The parameters of the proposed segment length distribution, estimated by maximum likelihood, give predictions of the number of conserved segments per chromosome. The model is applied to data from two comparative maps for the chicken, one with human and one with mouse.

Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1843-1851 ◽  
Author(s):  
John Parsch

AbstractIntron sizes show an asymmetrical distribution in a number of organisms, with a large number of “short” introns clustered around a minimal intron length and a much broader distribution of longer introns. In Drosophila melanogaster, the short intron class is centered around 61 bp. The narrow length distribution suggests that natural selection may play a role in maintaining intron size. A comparison of 15 orthologous introns among species of the D. melanogaster subgroup indicates that, in general, short introns are not under greater DNA sequence or length constraints than long introns. There is a bias toward deletions in all introns (deletion/insertion ratio is 1.66), and the vast majority of indels are of short length (<10 bp). Indels occurring on the internal branches of the phylogenetic tree are significantly longer than those occurring on the terminal branches. These results are consistent with a compensatory model of intron length evolution in which slightly deleterious short deletions are frequently fixed within species by genetic drift, and relatively rare larger insertions that restore intron length are fixed by positive selection. A comparison of paralogous introns shared among duplicated genes suggests that length constraints differ between introns within the same gene. The janusA, janusB, and ocnus genes share two short introns derived from a common ancestor. The first of these introns shows significantly fewer indels than the second intron, although the two introns show a comparable number of substitutions. This indicates that intron-specific selective constraints have been maintained following gene duplication, which preceded the divergence of the D. melanogaster species subgroup.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1387-1395 ◽  
Author(s):  
Sudhir Kumar ◽  
Sudhindra R Gadagkar ◽  
Alan Filipski ◽  
Xun Gu

AbstractGenomic divergence between species can be quantified in terms of the number of chromosomal rearrangements that have occurred in the respective genomes following their divergence from a common ancestor. These rearrangements disrupt the structural similarity between genomes, with each rearrangement producing additional, albeit shorter, conserved segments. Here we propose a simple statistical approach on the basis of the distribution of the number of markers in contiguous sets of autosomal markers (CSAMs) to estimate the number of conserved segments. CSAM identification requires information on the relative locations of orthologous markers in one genome and only the chromosome number on which each marker resides in the other genome. We propose a simple mathematical model that can account for the effect of the nonuniformity of the breakpoints and markers on the observed distribution of the number of markers in different conserved segments. Computer simulations show that the number of CSAMs increases linearly with the number of chromosomal rearrangements under a variety of conditions. Using the CSAM approach, the estimate of the number of conserved segments between human and mouse genomes is 529 ± 84, with a mean conserved segment length of 2.8 cM. This length is <40% of that currently accepted for human and mouse genomes. This means that the mouse and human genomes have diverged at a rate of ∼1.15 rearrangements per million years. By contrast, mouse and rat are diverging at a rate of only ∼0.74 rearrangements per million years.


Nematology ◽  
2003 ◽  
Vol 5 (5) ◽  
pp. 699-711 ◽  
Author(s):  
Peter Mullin ◽  
Timothy Harris ◽  
Thomas Powers

AbstractThe systematic position of Campydora Cobb, 1920, which possesses many unique morphological features, especially in pharyngeal structure and stomatal armature, has long been a matter of uncertainty with the 'position of the Campydorinae' (containing only Campydora) being questionable. A review of the morphology of C. demonstrans, the only nominal species of Campydora concluded that the species warranted placement as the sole member of a monotypic suborder, Campydorina, in the order Dorylaimida. Others placed Campydorina in the order Enoplida. We conducted phylogenetic analyses, using 18s small subunit ribosomal DNA sequences generated from a number of taxa in the subclasses Enoplia and Dorylaimia, to evaluate these competing hypotheses. Although precise taxonomic placement of the genus Campydora and the identity of its closest living relatives is in need of further investigation, our analyses, under maximum parsimony, distance, and maximum likelihood criteria, unambiguously indicate that Campydora shares a common, more recent, ancestry with genera such as Alaimus, Pontonema, Tripyla and Ironus (Enoplida), rather than with any members of Dorylaimida, Mononchida or Triplonchida.


Phytotaxa ◽  
2014 ◽  
Vol 170 (3) ◽  
pp. 187 ◽  
Author(s):  
ALFONS SCHÄFER-VERWIMP ◽  
KATHRIN FELDBERG ◽  
SHANSHAN DONG ◽  
HUUB VAN MELICK ◽  
DENILSON F. PERALTA ◽  
...  

The derived liverwort Leiolejeunea grandiflora was recollected at the type locality in Jamaica after more than 100 years. The characteristics of its oil bodies were described for the first time based on the new collections. Each leaf cell possesses 2-4(-6) rather small, subhomogeneous to very finely segmented, subglobose to ellipsoidal, colorless oil bodies. The plants were either dioicous or autoicous. DNA sequences of two chloroplast regions (trnL-trnF, rbcL) and the nuclear ribosomal ITS region were obtained for two accessions of Leiolejeunea to enable the inference of the phylogenetic relationships of these plants. Based on Bayesian inference of phylogeny as well as maximum parsimony and maximum likelihood analyses of a dataset including 87 representatives of Lejeuneaceae, Leiolejeunea was found as the putative sister to either Echinolejeuneinae or Cheilolejeuneinae. Thus, we propose the new monogeneric subtribe Leiolejeuneinae with relationships to Cheilolejeuneinae and Echinolejeuneinae. The analyses included also one accession of the generitype of Cheilolejeunea, C. decidua [= Cheilolejeunea adnata]. This species was found in a well supported sister relationship with Cystolejeunea. To avoid nomenclatural confusion, we propose a wide genus concept for Cheilolejeunea including Aureolejeunea, Cyrtolejeunea, Cystolejeunea, Evansiolejeunea, Leucolejeunea, and Omphalanthus.


Zootaxa ◽  
2007 ◽  
Vol 1610 (1) ◽  
pp. 27-39 ◽  
Author(s):  
PAUL E. MAREK ◽  
JASON E. BOND

Millipedes in the tribe Apheloriini occur throughout the eastern United States, predominately in the deciduous forests of the Appalachian Mountains. Herein we present a reassessment of apheloriine millipede phylogeny using mitochondrial DNA sequences and an additional 29 exemplar taxa (including 15 undescribed species and all of the species in the genus Brachoria, except one). In this study, first we check the results of the previous phylogeny of the tribe (Marek and Bond, 2006) with different alignment and phylogenetic techniques (direct optimization and maximum likelihood), and second reconstruct a new phylogeny evaluating it in the same way with Bayesian, maximum likelihood, and direct optimization. Using this updated and expanded phylogeny, we tested historical classifications with Bayes factor and Shimodaira-Hasegawa hypothesis testing, consistently finding very strong evidence against their implied phylogenetic hypotheses. Lastly, using the new phylogeny as a foundation, we make taxonomic modifications and provide an updated species list of Apheloriini (106 species/17 genera).


2016 ◽  
Author(s):  
Rui J. Costa ◽  
Hilde Wilkinson-Herbots

AbstractThe isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, Becquet and Przeworski (2009) report that the parameter estimates obtained by fitting the IM model are very sensitive to the model's assumptions (including the assumption of constant gene flow until the present). This paper is concerned with the isolation-with-initial-migration (IIM) model of Wilkinson-Herbots (2012), which drops precisely this assumption. In the IIM model, one ancestral population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our method can also be used to distinguish between alternative models representing different evolutionary scenarios, by means of likelihood ratio tests. We illustrate the procedure on pairs of Drosophila sequences from approximately 30,000 loci. The computing time needed to fit the most complex version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary files of this paper.


2015 ◽  
Vol 28 (4) ◽  
pp. 219 ◽  
Author(s):  
Benjamin W. van Ee ◽  
Paul I. Forster ◽  
Paul E. Berry

A molecular phylogeny, morphological descriptions, species lists and a key to the sections of Croton L. (Euphorbiaceae) recognised for Australia are presented. The molecular phylogenetic results supported the recognition of six sections, to account for the 29 native Australian species. The monophyly of each of these sections was highly supported in the Bayesian and maximum-likelihood analyses of nuclear ITS and plastid trnL–F DNA sequences, whereas their relationships to each other and to other groups were less well resolved. Croton may represent one, two or three separate arrivals to Australia, with support for hypotheses of subsequent dispersals from Australia to Pacific islands and to Asia. Croton sections Argyrati, Arnhemici, Caudati, Dockrilliorum and Insulares are newly described. Croton section Gymnocroton Baill., previously placed in synonymy, is again recognised. Croton armstrongii S.Moore is excluded from the Australian flora.


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 461 ◽  
Author(s):  
Manuel Stark ◽  
Simon A Berger ◽  
Alexandros Stamatakis ◽  
Christian von Mering

Sign in / Sign up

Export Citation Format

Share Document