Regulation of Capsule Synthesis and Cell Motility in Salmonella enterica by the Essential Gene igaA

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1513-1523
Author(s):  
David A Cano ◽  
Gustavo Domínguez-Bernal ◽  
Alberto Tierrez ◽  
Francisco Garcia-del Portillo ◽  
Josep Casadesús

Abstract Mutants of Salmonella enterica carrying the igaA1 allele, selected as able to overgrow within fibroblast cells in culture, are mucoid and show reduced motility. Mucoidy is caused by derepression of wca genes (necessary for capsule synthesis); these genes are regulated by the RcsC/YojN/RcsB phosphorelay system and by the RcsA coregulator. The induction of wca expression in an igaA1 mutant is suppressed by mutations in rcsA and rcsC. Reduced motility is caused by lowered expression of the flagellar master operon, flhDC, and is suppressed by mutations in rcsB or rcsC, suggesting that mutations in the igaA gene reduce motility by activating the RcsB/C system. A null igaA allele can be maintained only in an igaA+/igaA merodiploid, indicating that igaA is an essential gene. Lethality is suppressed by mutations in rcsB, rcsC, and yojN, but not in rcsA, suggesting that the viability defect of an igaA null mutant is mediated by the RcsB/RcsC system, independently of RcsA (and therefore of the wca genes). Because all the defects associated with igaA mutations are suppressed by mutations that block the RcsB/RcsC system, we propose a functional interaction between the igaA gene product and either the Rcs regulatory network or one of its regulated products.

1992 ◽  
Vol 12 (4) ◽  
pp. 1879-1892 ◽  
Author(s):  
J L Davis ◽  
R Kunisawa ◽  
J Thorner

Exposure of a haploid yeast cell to mating pheromone induces transcription of a set of genes. Induction is mediated through a cis-acting DNA sequence found upstream of all pheromone-responsive genes. Although the STE12 gene product binds specifically to this sequence element and is required for maximum levels of both basal and induced transcription, not all pheromone-responsive genes are regulated in an identical manner. To investigate whether additional factors may play a role in transcription of these genes, a genetic screen was used to identify mutants able to express pheromone-responsive genes constitutively in the absence of Ste12. In this way, we identified a recessive, single gene mutation (mot1, for modifier of transcription) which increases the basal level of expression of several, but not all, pheromone-responsive genes. The mot1-1 allele also relaxes the requirement for at least one other class of upstream activating sequence and enhances the expression of another gene not previously thought to be involved in the mating pathway. Cells carrying mot1-1 grow slowly at 30 degrees C and are inviable at 38 degrees C. The MOT1 gene was cloned by complementation of this temperature-sensitive lethality. Construction of a null allele confirmed that MOT1 is an essential gene. MOT1 residues on chromosome XVI and encodes a large protein of 1,867 amino acids which contains all seven of the conserved domains found in known and putative helicases. The product of MOT1 is strikingly homologous to the Saccharomyces cerevisiae SNF2/SW12 and RAD54 gene products over the entire helicase region.


1992 ◽  
Vol 12 (9) ◽  
pp. 3843-3856 ◽  
Author(s):  
J P O'Connor ◽  
C L Peebles

We have identified an essential Saccharomyces cerevisiae gene, PTA1, that affects pre-tRNA processing. PTA1 was initially defined by a UV-induced mutation, pta1-1, that causes the accumulation of all 10 end-trimmed, intron-containing pre-tRNAs and temperature-sensitive but osmotic-remedial growth. pta1-1 does not appear to be an allele of any other known gene affecting pre-tRNA processing. Extracts prepared from pta1-1 strains had normal pre-tRNA splicing endonuclease activity. pta1-1 was suppressed by the ochre suppressor tRNA gene SUP11, indicating that the pta1-1 mutation creates a termination codon within a protein reading frame. The PTA1 gene was isolated from a genomic library by complementation of the pta1-1 growth defect. Episome-borne PTA1 directs recombination to the pta1-1 locus. PTA1 has been mapped to the left arm of chromosome I near CDC24; the gene was sequenced and could encode a protein of 785 amino acids with a molecular weight of 88,417. No other protein sequences similar to that of the predicted PTA1 gene product have been identified within the EMBL or GenBank data base. Disruption of PTA1 near the carboxy terminus of the putative open reading frame was lethal. Possible functions of the PTA1 gene product are discussed.


Planta Medica ◽  
1991 ◽  
Vol 57 (S 2) ◽  
pp. A38-A38 ◽  
Author(s):  
Y. Jiang ◽  
J. Beck ◽  
L. Italiano ◽  
M. Haag ◽  
R. Anton

2007 ◽  
Vol 189 (11) ◽  
pp. 4325-4327 ◽  
Author(s):  
Sarah E. Broadbent ◽  
Roberto Balbontin ◽  
Josep Casadesus ◽  
Martin G. Marinus ◽  
Marjan van der Woude

ABSTRACT The Caulobacter crescentus DNA adenine methyltransferase CcrM and its homologs in the α-Proteobacteria are essential for viability. CcrM is 34% identical to the yhdJ gene products of Escherichia coli and Salmonella enterica. This study provides evidence that the E. coli yhdJ gene encodes a DNA adenine methyltransferase. In contrast to an earlier report, however, we show that yhdJ is not an essential gene in either E. coli or S. enterica.


Author(s):  
Nozomi Ohuchi ◽  
Katsuo Koike ◽  
Masakazu Sano ◽  
Tadashi Kusama ◽  
Yasuo Kizawa ◽  
...  

2004 ◽  
Vol 29 (1) ◽  
pp. 101-102 ◽  
Author(s):  
Deok Cheon Yeh ◽  
James F. Parsons ◽  
Lisa M. Parsons ◽  
Fang Liu ◽  
Edward Eisenstein ◽  
...  

2011 ◽  
Vol 84 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Shuijing Yu ◽  
Weibing Liu ◽  
Chunlei Shi ◽  
Dapeng Wang ◽  
Xianlong Dan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document