Eliminating the Requirement of an Essential Gene Product in an Already Very Small Virus: Scaffolding Protein B-free øX174, B-free

2007 ◽  
Vol 373 (2) ◽  
pp. 308-314 ◽  
Author(s):  
Min Chen ◽  
Asako Uchiyama ◽  
Bentley A. Fane
1992 ◽  
Vol 12 (4) ◽  
pp. 1879-1892 ◽  
Author(s):  
J L Davis ◽  
R Kunisawa ◽  
J Thorner

Exposure of a haploid yeast cell to mating pheromone induces transcription of a set of genes. Induction is mediated through a cis-acting DNA sequence found upstream of all pheromone-responsive genes. Although the STE12 gene product binds specifically to this sequence element and is required for maximum levels of both basal and induced transcription, not all pheromone-responsive genes are regulated in an identical manner. To investigate whether additional factors may play a role in transcription of these genes, a genetic screen was used to identify mutants able to express pheromone-responsive genes constitutively in the absence of Ste12. In this way, we identified a recessive, single gene mutation (mot1, for modifier of transcription) which increases the basal level of expression of several, but not all, pheromone-responsive genes. The mot1-1 allele also relaxes the requirement for at least one other class of upstream activating sequence and enhances the expression of another gene not previously thought to be involved in the mating pathway. Cells carrying mot1-1 grow slowly at 30 degrees C and are inviable at 38 degrees C. The MOT1 gene was cloned by complementation of this temperature-sensitive lethality. Construction of a null allele confirmed that MOT1 is an essential gene. MOT1 residues on chromosome XVI and encodes a large protein of 1,867 amino acids which contains all seven of the conserved domains found in known and putative helicases. The product of MOT1 is strikingly homologous to the Saccharomyces cerevisiae SNF2/SW12 and RAD54 gene products over the entire helicase region.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1513-1523
Author(s):  
David A Cano ◽  
Gustavo Domínguez-Bernal ◽  
Alberto Tierrez ◽  
Francisco Garcia-del Portillo ◽  
Josep Casadesús

Abstract Mutants of Salmonella enterica carrying the igaA1 allele, selected as able to overgrow within fibroblast cells in culture, are mucoid and show reduced motility. Mucoidy is caused by derepression of wca genes (necessary for capsule synthesis); these genes are regulated by the RcsC/YojN/RcsB phosphorelay system and by the RcsA coregulator. The induction of wca expression in an igaA1 mutant is suppressed by mutations in rcsA and rcsC. Reduced motility is caused by lowered expression of the flagellar master operon, flhDC, and is suppressed by mutations in rcsB or rcsC, suggesting that mutations in the igaA gene reduce motility by activating the RcsB/C system. A null igaA allele can be maintained only in an igaA+/igaA merodiploid, indicating that igaA is an essential gene. Lethality is suppressed by mutations in rcsB, rcsC, and yojN, but not in rcsA, suggesting that the viability defect of an igaA null mutant is mediated by the RcsB/RcsC system, independently of RcsA (and therefore of the wca genes). Because all the defects associated with igaA mutations are suppressed by mutations that block the RcsB/RcsC system, we propose a functional interaction between the igaA gene product and either the Rcs regulatory network or one of its regulated products.


1992 ◽  
Vol 12 (9) ◽  
pp. 3843-3856 ◽  
Author(s):  
J P O'Connor ◽  
C L Peebles

We have identified an essential Saccharomyces cerevisiae gene, PTA1, that affects pre-tRNA processing. PTA1 was initially defined by a UV-induced mutation, pta1-1, that causes the accumulation of all 10 end-trimmed, intron-containing pre-tRNAs and temperature-sensitive but osmotic-remedial growth. pta1-1 does not appear to be an allele of any other known gene affecting pre-tRNA processing. Extracts prepared from pta1-1 strains had normal pre-tRNA splicing endonuclease activity. pta1-1 was suppressed by the ochre suppressor tRNA gene SUP11, indicating that the pta1-1 mutation creates a termination codon within a protein reading frame. The PTA1 gene was isolated from a genomic library by complementation of the pta1-1 growth defect. Episome-borne PTA1 directs recombination to the pta1-1 locus. PTA1 has been mapped to the left arm of chromosome I near CDC24; the gene was sequenced and could encode a protein of 785 amino acids with a molecular weight of 88,417. No other protein sequences similar to that of the predicted PTA1 gene product have been identified within the EMBL or GenBank data base. Disruption of PTA1 near the carboxy terminus of the putative open reading frame was lethal. Possible functions of the PTA1 gene product are discussed.


2004 ◽  
Vol 29 (1) ◽  
pp. 101-102 ◽  
Author(s):  
Deok Cheon Yeh ◽  
James F. Parsons ◽  
Lisa M. Parsons ◽  
Fang Liu ◽  
Edward Eisenstein ◽  
...  

1994 ◽  
Vol 14 (9) ◽  
pp. 6361-6371 ◽  
Author(s):  
I Samejima ◽  
M Yanagida

The fission yeast Schizosaccharomyces pombe [corrected] temperature sensitivity cut8-563 mutation causes chromosome overcondensation and short spindle formation in the absence of sister chromatid separation. The cut8-563 mutation allows cytokinesis before the completion of anaphase, thus producing cells with a cut phenotype. The cut8+ gene product may be required for normal progression of anaphase. Diploidization occurs at the restrictive temperature, and 60 to 70% of the cells surviving after two generations are diploid. These phenotypes are reminiscent of those of budding yeast (Saccharomyces cerevisiae) ctf13 and ctf14 (ndc10) mutations. The cut8+ gene, isolated by complementation of the mutant, predicts a 262-amino-acid protein; the amino and carboxy domains are hydrophilic, while the central domain contains several hydrophobic stretches. It has a weak overall similarity to the budding yeast DBF8 gene product. DBF8 is an essential gene whose mutations result in delay in mitotic progression and chromosome instability. Anti-cut8 antibodies detect a 33-kDa polypeptide. Two multicopy suppressor genes for cut8-563 are identified. They are the cut1+ gene essential for nuclear division, and a new gene (designated cek1+) which encodes a novel protein kinase. The cek1+ gene product is unusually large (1,309 amino acids) and has a 112-amino-acid additional sequence in the kinase domain. The cek1+ gene is not an essential gene. Protein phosphorylation by cek1 may facilitate the progression of anaphase through direct or indirect interaction with the cut8 protein.


2006 ◽  
Vol 188 (11) ◽  
pp. 3813-3825 ◽  
Author(s):  
Renata O. Mattos-Graner ◽  
Kristen A. Porter ◽  
Daniel J. Smith ◽  
Yumiko Hosogi ◽  
Margaret J. Duncan

ABSTRACT Mutans streptococci are major etiological agents of dental caries, and several of their secreted products contribute to bacterial accumulation on teeth. Of these, Streptococcus mutans glucan binding protein B (GbpB) is a novel, immunologically dominant protein. Its biological function is unclear, although GbpB shares homology with a putative peptidoglycan hydrolase from S. agalactiae and S. pneumoniae, indicative of a role in murein biosynthesis. To determine the cellular function of GbpB, we used several approaches to inactivate the gene, analyze its expression, and identify interacting proteins. None of the transformants analyzed were true gbpB mutants, since they all contained both disrupted and wild-type gene copies, and expression of functional GbpB was always conserved. Thus, the inability to obtain viable gbpB null mutants supports the notion that gbpB is an essential gene. Northern blot and real-time PCR analyses suggested that induction of gbpB expression in response to stress was a strain-dependent phenomenon. Proteins that interacted with GbpB were identified in pull-down and coimmunoprecipitation assays, and these data suggest that GbpB interacts with ribosomal protein L7/L12, possibly as part of a protein complex involved in peptidoglycan synthesis and cell division.


2017 ◽  
Vol 91 (24) ◽  
Author(s):  
Brody J. Blackburn ◽  
Shuaizhi Li ◽  
Aaron P. Roznowski ◽  
Alexis R. Perez ◽  
Rodrigo H. Villarreal ◽  
...  

ABSTRACT Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability. IMPORTANCE Genetic analyses have been instrumental in deciphering the temporal events of many biochemical pathways. However, pleiotropic effects can complicate analyses. Vis-à-vis virion morphogenesis, an improper protein-protein interaction within an early assembly intermediate can influence the efficiency of all subsequent reactions. Consequently, the flux of assembly intermediates cumulatively decreases as the pathway progresses. During morphogenesis, ϕX174 coat protein participates in at least four well-defined reactions, each one characterized by an interaction with a scaffolding or structural protein. In this study, genetic analyses, biochemical characterizations, and physiological assays, i.e., elevating the protein levels with which the coat protein interacts, were used to elucidate pleiotropic effects that may alter the flux of intermediates through a morphogenetic pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ya-Chun Yang ◽  
Bill Sugden

Epstein-Barr virus (EBV) encodes more than 40 miRNAs that target cellular mRNAs to aid its infection, replication, and maintenance in individual cells and in its human host. Importin-7 (IPO7), also termed Imp7 or RanBPM7, is a nucleocytoplasmic transport protein that has been frequently identified as a target for two of these viral miRNAs. How the viral life cycle might benefit from regulating IPO7 has been unclear, though. We demonstrate with CRISPR-Cas9 mutagenesis that IPO7 is essential in at least three cells lines and that increasing its levels of expression inhibits growth of infected cells. EBV thus regulates the level of IPO7 to limit its accumulation consistent with its being required for survival of its host cell.


Sign in / Sign up

Export Citation Format

Share Document