scholarly journals Stochastic Search Variable Selection for Identifying Multiple Quantitative Trait Loci

Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 1129-1138 ◽  
Author(s):  
Nengjun Yi ◽  
Varghese George ◽  
David B Allison

AbstractIn this article, we utilize stochastic search variable selection methodology to develop a Bayesian method for identifying multiple quantitative trait loci (QTL) for complex traits in experimental designs. The proposed procedure entails embedding multiple regression in a hierarchical normal mixture model, where latent indicators for all markers are used to identify the multiple markers. The markers with significant effects can be identified as those with higher posterior probability included in the model. A simple and easy-to-use Gibbs sampler is employed to generate samples from the joint posterior distribution of all unknowns including the latent indicators, genetic effects for all markers, and other model parameters. The proposed method was evaluated using simulated data and illustrated using a real data set. The results demonstrate that the proposed method works well under typical situations of most QTL studies in terms of number of markers and marker density.

Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 867-883 ◽  
Author(s):  
Nengjun Yi ◽  
Shizhong Xu ◽  
David B Allison

AbstractMost complex traits of animals, plants, and humans are influenced by multiple genetic and environmental factors. Interactions among multiple genes play fundamental roles in the genetic control and evolution of complex traits. Statistical modeling of interaction effects in quantitative trait loci (QTL) analysis must accommodate a very large number of potential genetic effects, which presents a major challenge to determining the genetic model with respect to the number of QTL, their positions, and their genetic effects. In this study, we use the methodology of Bayesian model and variable selection to develop strategies for identifying multiple QTL with complex epistatic patterns in experimental designs with two segregating genotypes. Specifically, we develop a reversible jump Markov chain Monte Carlo algorithm to determine the number of QTL and to select main and epistatic effects. With the proposed method, we can jointly infer the genetic model of a complex trait and the associated genetic parameters, including the number, positions, and main and epistatic effects of the identified QTL. Our method can map a large number of QTL with any combination of main and epistatic effects. Utility and flexibility of the method are demonstrated using both simulated data and a real data set. Sensitivity of posterior inference to prior specifications of the number and genetic effects of QTL is investigated.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1547-1555 ◽  
Author(s):  
Wouter Coppieters ◽  
Alexandre Kvasz ◽  
Frédéric Farnir ◽  
Juan-Jose Arranz ◽  
Bernard Grisart ◽  
...  

Abstract We describe the development of a multipoint nonparametric quantitative trait loci mapping method based on the Wilcoxon rank-sum test applicable to outbred half-sib pedigrees. The method has been evaluated on a simulated dataset and its efficiency compared with interval mapping by using regression. It was shown that the rank-based approach is slightly inferior to regression when the residual variance is homoscedastic normal; however, in three out of four other scenarios envisaged, i.e., residual variance heteroscedastic normal, homoscedastic skewed, and homoscedastic positively kurtosed, the latter outperforms the former one. Both methods were applied to a real data set analyzing the effect of bovine chromosome 6 on milk yield and composition by using a 125-cM map comprising 15 microsatellites and a granddaughter design counting 1158 Holstein-Friesian sires.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1489-1506
Author(s):  
Kathleen D Jermstad ◽  
Daniel L Bassoni ◽  
Keith S Jech ◽  
Gary A Ritchie ◽  
Nicholas C Wheeler ◽  
...  

Abstract Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring temperatures. A three-generation mapping population of 460 cloned progeny was used for genetic mapping and phenotypic evaluations. An all-marker interval mapping method was used for scanning the genome for the presence of QTL and single-factor ANOVA was used for estimating QTL-by-environment interactions. A modest number of QTL were detected per trait, with individual QTL explaining up to 9.5% of the phenotypic variation. Two QTL-by-treatment interactions were found for growth initiation, whereas several QTL-by-treatment interactions were detected among growth cessation traits. This is the first report of QTL interactions with specific environmental signals in forest trees and will assist in the identification of candidate genes controlling these important adaptive traits in perennial plants.


2011 ◽  
Vol 93 (4) ◽  
pp. 303-318 ◽  
Author(s):  
TIMO KNÜRR ◽  
ESA LÄÄRÄ ◽  
MIKKO J. SILLANPÄÄ

SummaryA new estimation-based Bayesian variable selection approach is presented for genetic analysis of complex traits based on linear or logistic regression. By assigning a mixture of uniform priors (MU) to genetic effects, the approach provides an intuitive way of specifying hyperparameters controlling the selection of multiple influential loci. It aims at avoiding the difficulty of interpreting assumptions made in the specifications of priors. The method is compared in two real datasets with two other approaches, stochastic search variable selection (SSVS) and a re-formulation of Bayes B utilizing indicator variables and adaptive Student's t-distributions (IAt). The Markov Chain Monte Carlo (MCMC) sampling performance of the three methods is evaluated using the publicly available software OpenBUGS (model scripts are provided in the Supplementary material). The sensitivity of MU to the specification of hyperparameters is assessed in one of the data examples.


Metrika ◽  
2016 ◽  
Vol 80 (3) ◽  
pp. 289-308 ◽  
Author(s):  
Hengzhen Huang ◽  
Shuangshuang Zhou ◽  
Min-Qian Liu ◽  
Zong-Feng Qi

2010 ◽  
Vol 4 ◽  
pp. BBI.S4153 ◽  
Author(s):  
Song Wu ◽  
Jie Yang ◽  
Youjun Huang ◽  
Yao Li ◽  
Tongming Yin ◽  
...  

A pseudo-testcross pedigree is widely used for mapping quantitative trait loci (QTL) in outcrossing species, but the model for analyzing pseudo-testcross data borrowed from the inbred backcross design can only detect those QTLs that are heterozygous only in one parent. In this study, an intercross model that incorporates the high heterozygosity and phase uncertainty of outcrossing species was used to reanalyze a published data set on QTL mapping in poplar trees. Several intercross QTLs that are heterozygous in both parents were detected, which are responsible not only for biomass traits, but also for their genetic correlations. This study provides a more complete identification of QTLs responsible for economically important biomass traits in poplars.


2011 ◽  
Vol 93 (5) ◽  
pp. 333-342 ◽  
Author(s):  
XIA SHEN ◽  
LARS RÖNNEGÅRD ◽  
ÖRJAN CARLBORG

SummaryDealing with genotype uncertainty is an ongoing issue in genetic analyses of complex traits. Here we consider genotype uncertainty in quantitative trait loci (QTL) analyses for large crosses in variance component models, where the genetic information is included in identity-by-descent (IBD) matrices. An IBD matrix is one realization from a distribution of potential IBD matrices given available marker information. In QTL analyses, its expectation is normally used resulting in potentially reduced accuracy and loss of power. Previously, IBD distributions have been included in models for small human full-sib families. We develop an Expectation–Maximization (EM) algorithm for estimating a full model based on Monte Carlo imputation for applications in large animal pedigrees. Our simulations show that the bias of variance component estimates using traditional expected IBD matrix can be adjusted by accounting for the distribution and that the calculations are computationally feasible for large pedigrees.


Sign in / Sign up

Export Citation Format

Share Document