methylation quantitative trait loci
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 27)

H-INDEX

8
(FIVE YEARS 4)

2021 ◽  
Vol 51 ◽  
pp. e103
Author(s):  
Morne Du Plessis ◽  
Patricia Swart ◽  
Jacqueline Womersley ◽  
Karoline Kuchenbaecker ◽  
Leigh van den Heuvel ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Benjamin Planterose Jiménez ◽  
Manfred Kayser ◽  
Athina Vidaki

Abstract Background Illumina DNA methylation microarrays enable epigenome-wide analysis vastly used for the discovery of novel DNA methylation variation in health and disease. However, the microarrays’ probe design cannot fully consider the vast human genetic diversity, leading to genetic artifacts. Distinguishing genuine from artifactual genetic influence is of particular relevance in the study of DNA methylation heritability and methylation quantitative trait loci. But despite its importance, current strategies to account for genetic artifacts are lagging due to a limited mechanistic understanding on how such artifacts operate. Results To address this, we develop and benchmark UMtools, an R-package containing novel methods for the quantification and qualification of genetic artifacts based on fluorescence intensity signals. With our approach, we model and validate known SNPs/indels on a genetically controlled dataset of monozygotic twins, and we estimate minor allele frequency from DNA methylation data and empirically detect variants not included in dbSNP. Moreover, we identify examples where genetic artifacts interact with each other or with imprinting, X-inactivation, or tissue-specific regulation. Finally, we propose a novel strategy based on co-methylation that can discern between genetic artifacts and genuine genomic influence. Conclusions We provide an atlas to navigate through the huge diversity of genetic artifacts encountered on DNA methylation microarrays. Overall, our study sets the ground for a paradigm shift in the study of the genetic component of epigenetic variation in DNA methylation microarrays.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Scherer ◽  
Gilles Gasparoni ◽  
Souad Rahmouni ◽  
Tatiana Shashkova ◽  
Marion Arnoux ◽  
...  

Abstract Background Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects. Results Here, we present a two-step computational framework MAGAR (https://bioconductor.org/packages/MAGAR), which fully supports the identification of methQTLs from matched genotyping and DNA methylation data, and additionally allows for illuminating cell type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T cells, B cells) from healthy individuals and demonstrate the discrimination of common from cell type-specific methQTLs. We experimentally validate both types of methQTLs in an independent data set comprising additional cell types and tissues. Finally, we validate selected methQTLs located in the PON1, ZNF155, and NRG2 genes by ultra-deep local sequencing. In line with previous reports, we find cell type-specific methQTLs to be preferentially located in enhancer elements. Conclusions Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell type-specific epigenomic variation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kira A. Perzel Mandell ◽  
Nicholas J. Eagles ◽  
Richard Wilton ◽  
Amanda J. Price ◽  
Stephen A. Semick ◽  
...  

AbstractDNA methylation (DNAm) is an epigenetic regulator of gene expression and a hallmark of gene-environment interaction. Using whole-genome bisulfite sequencing, we have surveyed DNAm in 344 samples of human postmortem brain tissue from neurotypical subjects and individuals with schizophrenia. We identify genetic influence on local methylation levels throughout the genome, both at CpG sites and CpH sites, with 86% of SNPs and 55% of CpGs being part of methylation quantitative trait loci (meQTLs). These associations can further be clustered into regions that are differentially methylated by a given SNP, highlighting the genes and regions with which these loci are epigenetically associated. These findings can be used to better characterize schizophrenia GWAS-identified variants as epigenetic risk variants. Regions differentially methylated by schizophrenia risk-SNPs explain much of the heritability associated with risk loci, despite covering only a fraction of the genomic space. We provide a comprehensive, single base resolution view of association between genetic variation and genomic methylation, and implicate schizophrenia GWAS-associated variants as influencing the epigenetic plasticity of the brain.


Author(s):  
Karin Bolin ◽  
Juliana Imgenberg-Kreuz ◽  
Dag Leonard ◽  
Johanna K. Sandling ◽  
Andrei Alexsson ◽  
...  

AbstractThe genetic background of lupus nephritis (LN) has not been completely elucidated. We performed a case-only study of 2886 SLE patients, including 947 (33%) with LN. Renal biopsies were available from 396 patients. The discovery cohort (Sweden, n = 1091) and replication cohort 1 (US, n = 962) were genotyped on the Immunochip and replication cohort 2 (Denmark/Norway, n = 833) on a custom array. Patients with LN, proliferative nephritis, or LN with end-stage renal disease were compared with SLE without nephritis. Six loci were associated with LN (p < 1 × 10−4, NFKBIA, CACNA1S, ITGA1, BANK1, OR2Y, and ACER3) in the discovery cohort. Variants in BANK1 showed the strongest association with LN in replication cohort 1 (p = 9.5 × 10−4) and proliferative nephritis in a meta-analysis of discovery and replication cohort 1. There was a weak association between BANK1 and LN in replication cohort 2 (p = 0.052), and in the meta-analysis of all three cohorts the association was strengthened (p = 2.2 × 10−7). DNA methylation data in 180 LN patients demonstrated methylation quantitative trait loci (meQTL) effects between a CpG site and BANK1 variants. To conclude, we describe genetic variations in BANK1 associated with LN and evidence for genetic regulation of DNA methylation within the BANK1 locus. This indicates a role for BANK1 in LN pathogenesis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ming Li ◽  
Chen Lyu ◽  
Manyan Huang ◽  
Catherine Do ◽  
Benjamin Tycko ◽  
...  

Abstract Background Most congenital heart defects (CHDs) result from complex interactions among genetic susceptibilities, epigenetic modifications, and maternal environmental exposures. Characterizing the complex relationship between genetic, epigenetic, and transcriptomic variation will enhance our understanding of pathogenesis in this important type of congenital disorder. We investigated cis-acting effects of genetic single nucleotide polymorphisms (SNPs) on local DNA methylation patterns within 83 cardiac tissue samples and prioritized their contributions to CHD risk by leveraging results of CHD genome-wide association studies (GWAS) and their effects on cardiac gene expression. Results We identified 13,901 potential methylation quantitative trait loci (mQTLs) with a false discovery threshold of 5%. Further co-localization analyses and Mendelian randomization indicated that genetic variants near the HLA-DRB6 gene on chromosome 6 may contribute to CHD risk by regulating the methylation status of nearby CpG sites. Additional SNPs in genomic regions on chromosome 10 (TNKS2-AS1 gene) and chromosome 14 (LINC01629 gene) may simultaneously influence epigenetic and transcriptomic variations within cardiac tissues. Conclusions Our results support the hypothesis that genetic variants may influence the risk of CHDs through regulating the changes of DNA methylation and gene expression. Our results can serve as an important source of information that can be integrated with other genetic studies of heart diseases, especially CHDs.


2021 ◽  
Author(s):  
Michael Scherer ◽  
Gilles Gasparoni ◽  
Souad Rahmouni ◽  
Tatiana Shashkova ◽  
Marion Arnoux ◽  
...  

Background: Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL) but also for discriminating general from cell-type-specific effects. Results: Here, we present a two-step computational framework MAGAR, which fully supports identification of methQTLs from matched genotyping and DNA methylation data, and additionally the identification of quantitative cell-type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T-cells, B-cells) from healthy individuals and demonstrate the discrimination of common from cell-type-specific methQTLs. We experimentally validate both types of methQTLs in an independent dataset comprising additional cell types and tissues. Finally, we validate selected methQTLs (PON1, ZNF155, NRG2) by ultra-deep local sequencing. In line with previous reports, we find cell-type-specific methQTLs to be preferentially located in enhancer elements. Conclusions: Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell-type-specific epigenomic variation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sergio Villicaña ◽  
Jordana T. Bell

AbstractMultiple recent studies highlight that genetic variants can have strong impacts on a significant proportion of the human DNA methylome. Methylation quantitative trait loci, or meQTLs, allow for the exploration of biological mechanisms that underlie complex human phenotypes, with potential insights for human disease onset and progression. In this review, we summarize recent milestones in characterizing the human genetic basis of DNA methylation variation over the last decade, including heritability findings and genome-wide identification of meQTLs. We also discuss challenges in this field and future areas of research geared to generate insights into molecular processes underlying human complex traits.


Sign in / Sign up

Export Citation Format

Share Document