scholarly journals Erratum to: Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies

GigaScience ◽  
2018 ◽  
Vol 7 (7) ◽  
Author(s):  
Jonathan A Atkinson ◽  
Guillaume Lobet ◽  
Manuel Noll ◽  
Patrick E Meyer ◽  
Marcus Griffiths ◽  
...  
2017 ◽  
Author(s):  
Jonathan A. Atkinson ◽  
Guillaume Lobet ◽  
Manuel Noll ◽  
Patrick E. Meyer ◽  
Marcus Griffiths ◽  
...  

AbstractBackgroundGenetic analyses of plant root system development require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming).FindingsWe trained a Random Forest algorithm to infer architectural traits from automatically-extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify Quantitative Trait Loci that had previously been discovered using a semi-automated method.ConclusionsWe have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput in large scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other area of plant phenotyping.


2021 ◽  
Vol 9 (1) ◽  
pp. 1406-1412
Author(s):  
K. Santhi, A. Rama Mohan Reddy

Cardiovascular disease (CVD) is one of the critical diseases and the most common cause of morbidity and mortality worldwide. Therefore, early detection and prediction of such a disease is extremely essential for a healthy life. Cardiac imaging plays an important role in the diagnosis of cardiovascular disease but its role has been limited to visual assessment of heart structure and its function. However, with the advanced techniques and tools of big data and machine learning, it become easier to clinician to diagnose the CVD. Stenosis with in the Coronary Arteries (CA) are often determined by using the Coronary Cine Angiogram (CCA). It comes under the invasive image modality. CCA is the effective method to detect and predict the stenosis. In this paper a coronary analysis automation method is proposed in disease diagnosis. The proposed method includes pre-processing, segmentation, identifying vessel path and statistical analysis.


Author(s):  
Manjunath Thimmasandra Narayanapppa ◽  
T. P. Puneeth Kumar ◽  
Ravindra S. Hegadi

Recent technological advancements have led to generation of huge volume of data from distinctive domains (scientific sensors, health care, user-generated data, finical companies and internet and supply chain systems) over the past decade. To capture the meaning of this emerging trend the term big data was coined. In addition to its huge volume, big data also exhibits several unique characteristics as compared with traditional data. For instance, big data is generally unstructured and require more real-time analysis. This development calls for new system platforms for data acquisition, storage, transmission and large-scale data processing mechanisms. In recent years analytics industries interest expanding towards the big data analytics to uncover potentials concealed in big data, such as hidden patterns or unknown correlations. The main goal of this chapter is to explore the importance of machine learning algorithms and computational environment including hardware and software that is required to perform analytics on big data.


2020 ◽  
Vol 7 ◽  
pp. 1-26 ◽  
Author(s):  
Silas Nyboe Ørting ◽  
Andrew Doyle ◽  
Arno Van Hilten ◽  
Matthias Hirth ◽  
Oana Inel ◽  
...  

Rapid advances in image processing capabilities have been seen across many domains, fostered by the  application of machine learning algorithms to "big-data". However, within the realm of medical image analysis, advances have been curtailed, in part, due to the limited availability of large-scale, well-annotated datasets. One of the main reasons for this is the high cost often associated with producing large amounts of high-quality meta-data. Recently, there has been growing interest in the application of crowdsourcing for this purpose; a technique that has proven effective for creating large-scale datasets across a range of disciplines, from computer vision to astrophysics. Despite the growing popularity of this approach, there has not yet been a comprehensive literature review to provide guidance to researchers considering using crowdsourcing methodologies in their own medical imaging analysis. In this survey, we review studies applying crowdsourcing to the analysis of medical images, published prior to July 2018. We identify common approaches, challenges and considerations, providing guidance of utility to researchers adopting this approach. Finally, we discuss future opportunities for development within this emerging domain.


Sign in / Sign up

Export Citation Format

Share Document