scholarly journals Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large scale genetic studies

2017 ◽  
Author(s):  
Jonathan A. Atkinson ◽  
Guillaume Lobet ◽  
Manuel Noll ◽  
Patrick E. Meyer ◽  
Marcus Griffiths ◽  
...  

AbstractBackgroundGenetic analyses of plant root system development require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming).FindingsWe trained a Random Forest algorithm to infer architectural traits from automatically-extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify Quantitative Trait Loci that had previously been discovered using a semi-automated method.ConclusionsWe have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput in large scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other area of plant phenotyping.

Author(s):  
Manjunath Thimmasandra Narayanapppa ◽  
T. P. Puneeth Kumar ◽  
Ravindra S. Hegadi

Recent technological advancements have led to generation of huge volume of data from distinctive domains (scientific sensors, health care, user-generated data, finical companies and internet and supply chain systems) over the past decade. To capture the meaning of this emerging trend the term big data was coined. In addition to its huge volume, big data also exhibits several unique characteristics as compared with traditional data. For instance, big data is generally unstructured and require more real-time analysis. This development calls for new system platforms for data acquisition, storage, transmission and large-scale data processing mechanisms. In recent years analytics industries interest expanding towards the big data analytics to uncover potentials concealed in big data, such as hidden patterns or unknown correlations. The main goal of this chapter is to explore the importance of machine learning algorithms and computational environment including hardware and software that is required to perform analytics on big data.


2020 ◽  
Vol 7 ◽  
pp. 1-26 ◽  
Author(s):  
Silas Nyboe Ørting ◽  
Andrew Doyle ◽  
Arno Van Hilten ◽  
Matthias Hirth ◽  
Oana Inel ◽  
...  

Rapid advances in image processing capabilities have been seen across many domains, fostered by the  application of machine learning algorithms to "big-data". However, within the realm of medical image analysis, advances have been curtailed, in part, due to the limited availability of large-scale, well-annotated datasets. One of the main reasons for this is the high cost often associated with producing large amounts of high-quality meta-data. Recently, there has been growing interest in the application of crowdsourcing for this purpose; a technique that has proven effective for creating large-scale datasets across a range of disciplines, from computer vision to astrophysics. Despite the growing popularity of this approach, there has not yet been a comprehensive literature review to provide guidance to researchers considering using crowdsourcing methodologies in their own medical imaging analysis. In this survey, we review studies applying crowdsourcing to the analysis of medical images, published prior to July 2018. We identify common approaches, challenges and considerations, providing guidance of utility to researchers adopting this approach. Finally, we discuss future opportunities for development within this emerging domain.


2018 ◽  
Author(s):  
Su Bin Lim ◽  
Swee Jin Tan ◽  
Wan-Teck Lim ◽  
Chwee Teck Lim

AbstractBackgroundThere exist massive transcriptome profiles in the form of microarray, enabling reuse. The challenge is that they are processed with diverse platforms and preprocessing tools, requiring considerable time and informatics expertise for cross-dataset or cross-cancer analyses. If there exists a single, integrated data source consisting of thousands of samples, similar to TCGA, data-reuse will be facilitated for discovery, analysis, and validation of biomarker-based clinical strategy.FindingsWe present 11 merged microarray-acquired datasets (MMDs) of major cancer types, curating 8,386 patient-derived tumor and tumor-free samples from 95 GEO datasets. Highly concordant MMD-derived patterns of genome-wide differential gene expression were observed with matching TCGA cohorts. Using machine learning algorithms, we show that clinical models trained from all MMDs, except breast MMD, can be directly applied to RNA-seq-acquired TCGA data with an average accuracy of 0.96 in classifying cancer. Machine learning optimized MMD further aids to reveal immune landscape of human cancers critically needed in disease management and clinical interventions.ConclusionsTo facilitate large-scale meta-analysis, we generated a newly curated, unified, large-scale MMD across 11 cancer types. Besides TCGA, this single data source may serve as an excellent training or test set to apply, develop, and refine machine learning algorithms that can be tapped to better define genomic landscape of human cancers.


Cosmetics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Perry Xiao ◽  
Xu Zhang ◽  
Wei Pan ◽  
Xiang Ou ◽  
Christos Bontozoglou ◽  
...  

We present our latest research work on the development of a skin image analysis tool by using machine-learning algorithms. Skin imaging is very import in skin research. Over the years, we have used and developed different types of skin imaging techniques. As the number of skin images and the type of skin images increase, there is a need of a dedicated skin image analysis tool. In this paper, we report the development of such software tool by using the latest MATLAB App Designer. It is simple, user friendly and yet powerful. We intend to make it available on GitHub, so that others can benefit from the software. This is an ongoing project; we are reporting here what we have achieved so far, and more functions will be added to the software in the future.


Sign in / Sign up

Export Citation Format

Share Document