scholarly journals Chromosome-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis

GigaScience ◽  
2019 ◽  
Vol 8 (9) ◽  
Author(s):  
Yongxin Li ◽  
Yandong Ren ◽  
Dongru Zhang ◽  
Hui Jiang ◽  
Zhongkai Wang ◽  
...  

Abstract Background The mustache toad, Vibrissaphora ailaonica, is endemic to China and belongs to the Megophryidae family. Like other mustache toad species, V. ailaonica males temporarily develop keratinized nuptial spines on their upper jaw during each breeding season, which fall off at the end of the breeding season. This feature is likely result of the reversal of sexual dimorphism in body size, with males being larger than females. A high-quality reference genome for the mustache toad would be invaluable to investigate the genetic mechanism underlying these repeatedly developing keratinized spines. Findings To construct the mustache toad genome, we generated 225 Gb of short reads and 277 Gb of long reads using Illumina and Pacific Biosciences (PacBio) sequencing technologies, respectively. Sequencing data were assembled into a 3.53-Gb genome assembly, with a contig N50 length of 821 kb. We also used high-throughput chromosome conformation capture (Hi-C) technology to identify contacts between contigs, then assembled contigs into scaffolds and assembled a genome with 13 chromosomes and a scaffold N50 length of 412.42 Mb. Based on the 26,227 protein-coding genes annotated in the genome, we analyzed phylogenetic relationships between the mustache toad and other chordate species. The mustache toad has a relatively higher evolutionary rate and separated from a common ancestor of the marine toad, bullfrog, and Tibetan frog 206.1 million years ago. Furthermore, we identified 201 expanded gene families in the mustache toad, which were mainly enriched in immune pathway, keratin filament, and metabolic processes. Conclusions Using Illumina, PacBio, and Hi-C technologies, we constructed the first high-quality chromosome-level mustache toad genome. This work not only offers a valuable reference genome for functional studies of mustache toad traits but also provides important chromosomal information for wider genome comparisons.

GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Lu Wang ◽  
Jinwei Wu ◽  
Xiaomei Liu ◽  
Dandan Di ◽  
Yuhong Liang ◽  
...  

Abstract Background The golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered colobine species endemic to China, which has several distinct traits including a unique social structure. Although a genome assembly for R. roxellana is available, it is incomplete and fragmented because it was constructed using short-read sequencing technology. Thus, important information such as genome structural variation and repeat sequences may be absent. Findings To obtain a high-quality chromosomal assembly for R. roxellana qinlingensis, we used 5 methods: Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, BioNano optical maps, 10X Genomics link-reads, and high-throughput chromosome conformation capture. The assembled genome was ∼3.04 Gb, with a contig N50 of 5.72 Mb and a scaffold N50 of 144.56 Mb. This represented a 100-fold improvement over the previously published genome. In the new genome, 22,497 protein-coding genes were predicted, of which 22,053 were functionally annotated. Gene family analysis showed that 993 and 2,745 gene families were expanded and contracted, respectively. The reconstructed phylogeny recovered a close relationship between R. rollexana and Macaca mulatta, and these 2 species diverged ∼13.4 million years ago. Conclusion We constructed a high-quality genome assembly of the Qinling golden snub-nosed monkey; it had superior continuity and accuracy, which might be useful for future genetic studies in this species and as a new standard reference genome for colobine primates. In addition, the updated genome assembly might improve our understanding of this species and could assist conservation efforts.


2021 ◽  
Author(s):  
Xiumei Xing ◽  
Cheng Ai ◽  
Tianjiao Wang ◽  
Yang LI ◽  
Huitao Liu ◽  
...  

Sika deer are known to prefer oak leaves, which are rich in tannins and toxic to most mammals; however, the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear. In identifying the mechanism responsible for the tolerance of a highly toxic diet, we have made a major advancement in the elucidation of the genomics of sika deer. We generated the first high-quality, chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments. Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food, especially the expansion of UGT genes in a subfamily. The first chromosome-level assembly and genetic characterization of the tolerance toa highly toxic diet suggest that the sika deer genome will serve as an essential resource for understanding evolutionary events and tannin adaptation. Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.


GigaScience ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
De-Lu Ning ◽  
Tao Wu ◽  
Liang-Jun Xiao ◽  
Ting Ma ◽  
Wen-Liang Fang ◽  
...  

Abstract Background Juglans sigillata, or iron walnut, belonging to the order Juglandales, is an economically important tree species in Asia, especially in the Yunnan province of China. However, little research has been conducted on J. sigillata at the molecular level, which hinders understanding of its evolution, speciation, and synthesis of secondary metabolites, as well as its wide adaptability to its plateau environment. To address these issues, a high-quality reference genome of J. sigillata would be useful. Findings To construct a high-quality reference genome for J. sigillata, we first generated 38.0 Gb short reads and 66.31 Gb long reads using Illumina and Nanopore sequencing platforms, respectively. The sequencing data were assembled into a 536.50-Mb genome assembly with a contig N50 length of 4.31 Mb. Additionally, we applied BioNano technology to identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly with scaffold N50 length of 16.43 Mb and contig N50 length of 4.34 Mb. To obtain a chromosome-level genome assembly, we constructed 1 Hi-C library and sequenced 79.97 Gb raw reads using the Illumina HiSeq platform. We anchored ∼93% of the scaffold sequences into 16 chromosomes and evaluated the quality of our assembly using the high contact frequency heat map. Repetitive elements account for 50.06% of the genome, and 30,387 protein-coding genes were predicted from the genome, of which 99.8% have been functionally annotated. The genome-wide phylogenetic tree indicated an estimated divergence time between J. sigillata and Juglans regia of 49 million years ago on the basis of single-copy orthologous genes. Conclusions We provide the first chromosome-level genome for J. sigillata. It will lay a valuable foundation for future research on the genetic improvement of J. sigillata.


Author(s):  
Leily Rabbani ◽  
Jonas Müller ◽  
Detlef Weigel

1AbstractMotivationNew DNA sequencing technologies have enabled the rapid analysis of many thousands of genomes from a single species. At the same time, the conventional approach of mapping sequencing reads against a single reference genome sequence is no longer adequate. However, even where multiple high-quality reference genomes are available, the problem remains how one would integrate results from pairwise analyses.ResultTo overcome the limits imposed by mapping sequence reads against a single reference genome, or serially mapping them against multiple reference genomes, we have developed the MGR method that allows simultaneous comparison against multiple high-quality reference genomes, in order to remove the bias that comes from using only a single-genome reference and to simplify downstream analyses. To this end, we present the MGR algorithm that creates a graph (MGR graph) as a multi-genome reference. To reduce the size and complexity of the multi-genome reference, highly similar orthologous1 and paralogous2 regions are collapsed while more substantial differences are retained. To evaluate the performance of our model, we have developed a genome compression tool, which can be used to estimate the amount of shared information between genomes.Availabilityhttps://github.com/LeilyR/[email protected]


GigaScience ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Monica M Sheffer ◽  
Anica Hoppe ◽  
Henrik Krehenwinkel ◽  
Gabriele Uhl ◽  
Andreas W Kuss ◽  
...  

Abstract Background Argiope bruennichi, the European wasp spider, has been investigated intensively as a focal species for studies on sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies. Findings We generated, de novo, a 1.67 Gb genome assembly of A. bruennichi using 21.8× Pacific Biosciences sequencing, polished with 19.8× Illumina paired-end sequencing data, and proximity ligation (Hi-C)-based scaffolding. This resulted in an N50 scaffold size of 124 Mb and an N50 contig size of 288 kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high-quality assembly. Conclusions We present the first chromosome-level genome assembly in the order Araneae. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation not only in A. bruennichi but also in arachnids overall, shedding light on questions such as the genomic architecture of traits, whole-genome duplication, and the genomic mechanisms behind silk and venom evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Feng Tian ◽  
Qiao-Mu Hu ◽  
Zhong Li

Abstract The swamp eel (Monopterus albus) is one economically important fish in China and South-Eastern Asia and a good model species to study sex inversion. There are different genetic lineages and multiple local strains of swamp eel in China, and one local strain of M. albus with deep yellow and big spots has been selected for consecutive selective breeding due to superiority in growth rate and fecundity. A high-quality reference genome of the swamp eel would be a very useful resource for future selective breeding program. In the present study, we applied PacBio single-molecule sequencing technique (SMRT) and the high-throughput chromosome conformation capture (Hi-C) technologies to assemble the M. albus genome. A 799 Mb genome was obtained with the contig N50 length of 2.4 Mb and scaffold N50 length of 67.24 Mb, indicating 110-fold and ∼31.87-fold improvement compared to the earlier released assembly (∼22.24 Kb and 2.11 Mb, respectively). Aided with Hi-C data, a total of 750 contigs were reliably assembled into 12 chromosomes. Using 22,373 protein-coding genes annotated here, the phylogenetic relationships of the swamp eel with other teleosts showed that swamp eel separated from the common ancestor of Zig-zag eel ∼49.9 million years ago, and 769 gene families were found expanded, which are mainly enriched in the immune system, sensory system, and transport and catabolism. This highly accurate, chromosome-level reference genome of M. albus obtained in this work will be used for the development of genome-scale selective breeding.


Author(s):  
Monica M. Sheffer ◽  
Anica Hoppe ◽  
Henrik Krehenwinkel ◽  
Gabriele Uhl ◽  
Andreas W. Kuss ◽  
...  

AbstractBackgroundArgiope bruennichi, the European wasp spider, has been studied intensively as to sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies.FindingsWe generated, de novo, a 1.67Gb genome assembly of A. bruennichi using 21.5X PacBio sequencing, polished with 30X Illumina paired-end sequencing data, and proximity ligation (Hi-C) based scaffolding. This resulted in an N50 scaffold size of 124Mb and an N50 contig size of 288kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high quality of the assembly.ConclusionsWe present the first chromosome-level genome assembly in the class Arachnida. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation in A. bruennichi, as well as on several interesting topics in Arachnids, such as the genomic architecture of traits, whole genome duplication and the genomic mechanisms behind silk and venom evolution.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hong-Lei Li ◽  
Lin Wu ◽  
Zhaoming Dong ◽  
Yusong Jiang ◽  
Sanjie Jiang ◽  
...  

AbstractGinger (Zingiber officinale), the type species of Zingiberaceae, is one of the most widespread medicinal plants and spices. Here, we report a high-quality, chromosome-scale reference genome of ginger ‘Zhugen’, a traditionally cultivated ginger in Southwest China used as a fresh vegetable, assembled from PacBio long reads, Illumina short reads, and high-throughput chromosome conformation capture (Hi-C) reads. The ginger genome was phased into two haplotypes, haplotype 1 (1.53 Gb with a contig N50 of 4.68 M) and haplotype 0 (1.51 Gb with a contig N50 of 5.28 M). Homologous ginger chromosomes maintained excellent gene pair collinearity. In 17,226 pairs of allelic genes, 11.9% exhibited differential expression between alleles. Based on the results of ginger genome sequencing, transcriptome analysis, and metabolomic analysis, we proposed a backbone biosynthetic pathway of gingerol analogs, which consists of 12 enzymatic gene families, PAL, C4H, 4CL, CST, C3’H, C3OMT, CCOMT, CSE, PKS, AOR, DHN, and DHT. These analyses also identified the likely transcription factor networks that regulate the synthesis of gingerol analogs. Overall, this study serves as an excellent resource for further research on ginger biology and breeding, lays a foundation for a better understanding of ginger evolution, and presents an intact biosynthetic pathway for species-specific gingerol biosynthesis.


2021 ◽  
Author(s):  
Xinxin Yi ◽  
Jing Liu ◽  
Shengcai Chen ◽  
Hao Wu ◽  
Min Liu ◽  
...  

Cultivated soybean (Glycine max) is an important source for protein and oil. Many elite cultivars with different traits have been developed for different conditions. Each soybean strain has its own genetic diversity, and the availability of more high-quality soybean genomes can enhance comparative genomic analysis for identifying genetic underpinnings for its unique traits. In this study, we constructed a high-quality de novo assembly of an elite soybean cultivar Jidou 17 (JD17) with chromsome contiguity and high accuracy. We annotated 52,840 gene models and reconstructed 74,054 high-quality full-length transcripts. We performed a genome-wide comparative analysis based on the reference genome of JD17 with three published soybeans (WM82, ZH13 and W05) , which identified five large inversions and two large translocations specific to JD17, 20,984 - 46,912 PAVs spanning 13.1 - 46.9 Mb in size, and 5 - 53 large PAV clusters larger than 500kb. 1,695,741 - 3,664,629 SNPs and 446,689 - 800,489 Indels were identified and annotated between JD17 and them. Symbiotic nitrogen fixation (SNF) genes were identified and the effects from these variants were further evaluated. It was found that the coding sequences of 9 nitrogen fixation-related genes were greatly affected. The high-quality genome assembly of JD17 can serve as a valuable reference for soybean functional genomics research.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Baohua Chen ◽  
Zhixiong Zhou ◽  
Qiaozhen Ke ◽  
Yidi Wu ◽  
Huaqiang Bai ◽  
...  

Abstract Larimichthys crocea is an endemic marine fish in East Asia that belongs to Sciaenidae in Perciformes. L. crocea has now been recognized as an “iconic” marine fish species in China because not only is it a popular food fish in China, it is a representative victim of overfishing and still provides high value fish products supported by the modern large-scale mariculture industry. Here, we report a chromosome-level reference genome of L. crocea generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The genome sequences were assembled into 1,591 contigs with a total length of 723.86 Mb and a contig N50 length of 2.83 Mb. After chromosome-level scaffolding, 24 scaffolds were constructed with a total length of 668.67 Mb (92.48% of the total length). Genome annotation identified 23,657 protein-coding genes and 7262 ncRNAs. This highly accurate, chromosome-level reference genome of L. crocea provides an essential genome resource to support the development of genome-scale selective breeding and restocking strategies of L. crocea.


Sign in / Sign up

Export Citation Format

Share Document