Experimental studies on the mechanism of seismoelectric logging while drilling with multipole source

Author(s):  
Jun Wang ◽  
Zhenya Zhu ◽  
Wei Guan ◽  
Yongxin Gao ◽  
Xiaorong Wu

Summary When a seismic wave propagates in a fluid-saturated porous medium, a relative movement forms between the solid and fluid and induces an electric current due to the electronic double layer. As a result, two kinds of seismoelectric coupling responses are generated in this procedure, i.e. the localized electric/magnetic field and interfacial electromagnetic wave field. One important potential application of these two seismoelectric conversions is used for measuring formation P and S waves in well logging. Considering that the strong collar wave seriously affects the velocity measurements of formation P and S waves in current acoustic logging while drilling (LWD), the seismoelectric logging while drilling method, which combines seismoelectric conversion and acoustic LWD technique, was suggested to be a novel method in oil and gas exploration. Because the collar wave can't induce any seismoelectric signal on the metal collar, since there is no double layer formed on a metal surface. In this paper, acoustic and seismoelectric LWD measurements are conducted in the laboratory. We build a scaled multipole acoustic LWD tool to conduct acoustic measurements in a water tank and a sandstone borehole model. We also build a multipole seismoelectric LWD tool and record the seismoelectric signals induced with the same acoustic source. Then we compare the recorded acoustic and seismoelectric signals by using the experimental data. The result indicates that the apparent velocities of seismoelectric signals are equal to the formation P and S wave velocities and the collar waves do not induce any visible electric signal in the full waveforms. We further analyze the mechanism of seismoelectric LWD by a quantitative comparison of the amplitudes between the inner collar wave and outer collar wave. The results show that the amplitude of outer collar wave decreases significantly when it radiates out of the tool, so that the seismoelectric signals induced by collar waves are too weak to be distinguished in the full waveforms of seismoelectric LWD measurements. Thus, the formation P and S wave velocities are detected accurately from the recorded seismoelectric LWD data. These results verify the feasibility of seismoelectric LWD method for measuring acoustic velocities of the borehole formation.

Geophysics ◽  
1994 ◽  
Vol 59 (10) ◽  
pp. 1512-1529 ◽  
Author(s):  
Gopa S. De ◽  
Donald F. Winterstein ◽  
Mark A. Meadows

We compared P‐ and S‐wave velocities and quality factors (Q’S) from vertical seismic profiling (VSP) and sonic log measurements in five wells, three from the southwest San Joaquin Basin of California, one from near Laredo, Texas, and one from northern Alberta. Our purpose was to investigate the bias between sonic log and VSP velocities and to examine to what degree this bias might be a consequence of dispersion. VSPs and sonic logs were recorded in the same well in every case. Subsurface formations were predominantly clastic. The bias found was that VSP transit times were greater than sonic log times, consistent with normal dispersion. For the San Joaquin wells, differences in S‐wave transit times averaged 1–2 percent, while differences in P‐wave transit times averaged 6–7 percent. For the Alberta well, the situation was reversed, with differences in S‐wave transit times being about 6 percent, while those for P‐waves were 2.5 percent. For the Texas well, the differences averaged about 4 percent for both P‐ and S‐waves. Drift‐curve slopes for S‐waves tended to be low where the P‐wave slopes were high and vice versa. S‐wave drift‐curve slopes in the shallow California wells were 5–10 μs/ft (16–33 μs/m) and the P‐wave slopes were 15–30 μs/ft (49–98 μs/m). The S‐wave slope in sandstones in the northern Alberta well was up to 50 μs/ft (164 μs/m), while the P‐wave slope was about 5 μs/ft (16 μs/m). In the northern Alberta well the slopes for both P‐ and S‐waves flattened in the carbonate. In the Texas well, both P‐ and S‐wave drifts were comparable. We calculated (Q’s) from a velocity dispersion formula and from spectral ratios. When the two Q’s agreed, we concluded that velocity dispersion resulted solely from absorption. These Q estimation methods were reliable only for Q values smaller than 20. We found that, even with data of generally outstanding quality, Q values determined by standard methods can have large uncertainties, and negative Q’s may be common.


Geophysics ◽  
1990 ◽  
Vol 55 (4) ◽  
pp. 470-479 ◽  
Author(s):  
D. F. Winterstein ◽  
B. N. P. Paulsson

Crosshole and vertical seismic profile (VST) data made possible accurate characterization of the elastic properties, including noticeable velocity anisotropy, of a near‐surface late Tertiary shale formation. Shear‐wave splitting was obvious in both crosshole and VSP data. In crosshole data, two orthologonally polarrized shear (S) waves arrived 19 ms in the uppermost 246 ft (75 m). Vertically traveling S waves of the VSP separated about 10 ms in the uppermost 300 ft (90 m) but remained at nearly constant separation below that level. A transversely isotropic model, which incorporates a rapid increase in S-wave velocities with depth but slow increase in P-wave velocities, closely fits the data over most of the measured interval. Elastic constants of the transvesely isotropic model show spherical P- and [Formula: see text]wave velocity surfaces but an ellipsoidal [Formula: see text]wave surface with a ratio of major to minor axes of 1.15. The magnitude of this S-wave anisotropy is consistent with and lends credence to S-wave anisotropy magnitudes deduced less directly from data of many sedimentary basins.


2021 ◽  
Vol 18 (1) ◽  
pp. 74-84
Author(s):  
Yunjia Ji ◽  
Xiao He ◽  
Hao Chen ◽  
Xiuming Wang

Abstract Velocities of P and S waves are main goals of downhole acoustic logging. In this work, we study the effects of an off-center acoustic tool on formation P and S head waves in monopole logging while drilling (LWD), which will be helpful for accurate interpretation of recorded logs. We first develop an analytic method to solve the wavefields of this asymmetric LWD model. Then using a branch-cut integration technique, we evaluate the contributions of branch points associated with P and S waves, and further investigate the effects of tool eccentricity on their characteristics of excitation, attenuation and waveforms. The analyses reveal that the variation of the excitation and attenuation of both P and S head waves with eccentricity depends on frequencies and receiver azimuths strongly. Besides, new resonance peaks appear in excitation spectra due to influences of poles of multipole modes near branch points when the monopole tool is off-center. According to semblance results of individual compressional and shear waveforms, extracted velocities are not affected by tool eccentricity in both fast and slow formations. In fast formations, spectra analyses indicate that S-wave excitation is more sensitive to tool eccentricity than P-wave. Moreover, resonance peaks in P-wave excitation spectra increase with the increasing eccentricity in all directions. In slow formations, off-center tools almost have no influence on both P and S waves at low frequencies, which suggests that the effects of tool eccentricity can be reduced by adjusting the source's operating frequency.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. D45-D52
Author(s):  
Yuanda Su ◽  
Xinding Fang ◽  
Xiaoming Tang

Acoustic logging-while-drilling (LWD) is used to measure formation velocity/slowness during drilling. In a fast formation, in which the S-wave velocity is higher than the borehole-fluid velocity, monopole logging can be used to obtain P- and S-wave velocities by measuring the corresponding refracted waves. In a slow formation, in which the S-wave velocity is less than the borehole-fluid velocity, because the fully refracted S-wave is missing, quadrupole logging has been developed and used for S-wave slowness measurement. A recent study based on numerical modeling implies that monopole LWD can generate a detectable transmitted S-wave in a slow formation. This nondispersive transmitted S-wave propagates at the formation S-wave velocity and thus can be used for measuring the S-wave slowness of a slow formation. We evaluate a field example to demonstrate the applicability of monopole LWD in determining the S-wave slowness of slow formations. We compare the S-wave slowness extracted from a monopole LWD data set acquired in a slow formation and the result derived from the quadrupole data recorded in the same logging run. The results indicated that the S-wave slowness can be reliably determined from monopole LWD sonic data in fairly slow formations. However, we found that the monopole approach is not applicable to very slow formations because the transmitted S-wave becomes too weak to detect when the formation S-wave slowness is much higher than the borehole-fluid slowness.


Author(s):  
Victor Solovyev ◽  
Viktor Seleznev ◽  
Vladimir Chechelnitsky ◽  
Alexander Salnikov ◽  
Natalya Galyova

The results of the analysis of geological, geophysical, and geodynamic studies in the South-East of Transbaikalia are presented in order to substantiate the high speeds of P-and S-waves along the Mohorovichich boundary established here by profile seismic and area seismological studies. The issues of possible anisotropy of the upper mantle were discussed, and the experimental values of Р-and S-wave velocities (according to the data of the GSS and seismology) were compared with the calculations of elastic parameters values based on the approximate mineral composition of probable upper mantle rocks (peridotites, percolates, pyroxenites and eclogites) and experimental values of Р - and S-wave velocities for these rocks obtained at pressures in the upper mantle (up to 10 kbar). By results of discussion of possible causes of increased speeds made the conclusion on the validity of assumptions about the nature of the high-speed block in the mantle of Transbaikalia as the plates eclogites (or eclogitic rocks) in the area of Mongol-Okhotsk orogenic belt.


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. E133-E143 ◽  
Author(s):  
Zhenya Zhu ◽  
M. Nafi Toksöz ◽  
Rama Rao ◽  
Daniel R. Burns

We develop a 1:12 scale model logging-while-drilling (LWD) acoustic tool for laboratory measurements in borehole models to investigate the effects of tool wave modes on our ability to determine formation velocities in acoustic LWD. The scaled tool is comprised of three sections: (1) the source section, consisting of four transducers mounted on the tool body that can generate monopole, dipole, and quadrupole waves; (2) the receiver section, consisting of six sets of receivers, each containing two transducers mounted on opposite sides of the tool center line; and (3) the connector section, a threaded steel cylinder that connects the source and receiver sections tightly to simulate an LWD tool. We use four borehole models to simulate fast and slow isotropic and anisotropic formations. The slow-formation models are constructed of synthetic material ([Formula: see text] for the isotropic case and [Formula: see text] for the anisotropic case). The fast-formation models are made from natural rock samples (sandstone for the isotropic case and slate for the anisotropic case). Tool-wave characteristicswere measured in a water tank, followed by a series of experiments in the four borehole models to record monopole, dipole, and quadrupole acoustic waves when the tool was used with or without the connector. Without the connector in place, the tool measured formation arrivals that were consistent with wireline-logging predictions. With the connector in place, the coupling of the source and receiver sections resulted in strong tool waves that could mask formation arrivals. In general, the quadrupole mode more consistently provided correct formation shear-wave velocities because the tool modes propagated with higher velocities and could be separated from the formation shear arrivals. The dipole tool mode often could interfere with the formation flexural wave, especially for soft formations. By increasing the operating frequency of the source, tool waves could be eliminated and formation arrivals more easily measured in all cases. Based on these observations, it is important to choose the optimum working frequencies in LWD to reduce tool modes and allow formation shear velocities to be measured with dipole or quadrupole tools, particularly in anisotropic formations.


Geophysics ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. T469-T485
Author(s):  
Bingbing Sun ◽  
Tariq Alkhalifah

We have developed a pseudoelastic wave equation describing pure pressure waves propagating in elastic media. The pure pressure-mode (P-mode) wave equation uses all of the elastic parameters (such as density and the P- and S-wave velocities). It produces the same amplitude variation with offset (AVO) effects as PP-reflections computed by the conventional elastic wave equation. Because the new wave equation is free of S-waves, it does not require finer grids for simulation. This leads to a significant computational speedup when the ratio of pressure to S-wave velocities is large. We test the performance of our method on a simple synthetic model with high-velocity contrasts. The amplitude admitted by the pseudoelastic pure P-mode wave equation is highly consistent with that associated with the conventional elastic wave equation over a large range of incidence angles. We further verify our method’s robustness and accuracy using a more complex and realistic 2D salt model from the SEG Advanced Modeling Program. The ideal AVO behavior and computational advantage make our wave equation a good candidate as a forward simulation engine for performing elastic full-waveform inversion, especially for marine streamer data sets.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 131-139 ◽  
Author(s):  
M. Boulfoul ◽  
D. R. Watts

Instantaneous rotations are combined with f-k filtering to extract coherent S‐wave events from multicomponent shot records recorded by British Institutions Reflection Profiling Syndicate (BIRPS) Weardale Integrated S‐wave and P‐wave analysis (WISPA) experiment. This experiment was an attempt to measure the Poisson’s ratio of the lower crest by measuring P‐wave and S‐wave velocities. The multihole explosive source technique did generate S‐waves although not of opposite polarization. Attempts to produce stacks of the S‐wave data are unsuccessful because S‐wave splitting in the near surface produced random polarizations from receiver group to receiver group. The delay between the split wavelets varies but is commonly between 20 to 40 ms for 10 Hz wavelets. Dix hyperbola are produced on shot records after instantaneous rotations are followed by f-k filtering. To extract the instantaneous polarization, the traces are shifted back by the length of a moving window over which the calculation is performed. The instantaneous polarization direction is computed from the shifted data using the maximum eigenvector of the covariance matrix over the computation window. Split S‐waves are separated by the instantaneous rotation of the unshifted traces to the directions of the maximum eigenvectors determined for each position of the moving window. F-K filtering is required because of the presence of mode converted S‐waves and S‐waves produced by the explosive source near the time of detonation. Examples from synthetic data show that the method of instantaneous rotations will completely separate split S‐waves if the length of the moving window over which the calculation is performed is the length of the combined split wavelets. Separation may be achieved on synthetic data for wavelet delays as small as two sample intervals.


Geophysics ◽  
1986 ◽  
Vol 51 (10) ◽  
pp. 1893-1903 ◽  
Author(s):  
Albert Tarantola

The problem of interpretation of seismic reflection data can be posed with sufficient generality using the concepts of inverse theory. In its roughest formulation, the inverse problem consists of obtaining the Earth model for which the predicted data best fit the observed data. If an adequate forward model is used, this best model will give the best images of the Earth’s interior. Three parameters are needed for describing a perfectly elastic, isotropic, Earth: the density ρ(x) and the Lamé parameters λ(x) and μ(x), or the density ρ(x) and the P-wave and S-wave velocities α(x) and β(x). The choice of parameters is not neutral, in the sense that although theoretically equivalent, if they are not adequately chosen the numerical algorithms in the inversion can be inefficient. In the long (spatial) wavelengths of the model, adequate parameters are the P-wave and S-wave velocities, while in the short (spatial) wavelengths, P-wave impedance, S-wave impedance, and density are adequate. The problem of inversion of waveforms is highly nonlinear for the long wavelengths of the velocities, while it is reasonably linear for the short wavelengths of the impedances and density. Furthermore, this parameterization defines a highly hierarchical problem: the long wavelengths of the P-wave velocity and short wavelengths of the P-wave impedance are much more important parameters than their counterparts for S-waves (in terms of interpreting observed amplitudes), and the latter are much more important than the density. This suggests solving the general inverse problem (which must involve all the parameters) by first optimizing for the P-wave velocity and impedance, then optimizing for the S-wave velocity and impedance, and finally optimizing for density. The first part of the problem of obtaining the long wavelengths of the P-wave velocity and the short wavelengths of the P-wave impedance is similar to the problem solved by present industrial practice (for accurate data interpretation through velocity analysis and “prestack migration”). In fact, the method proposed here produces (as a byproduct) a generalization to the elastic case of the equations of “prestack acoustic migration.” Once an adequate model of the long wavelengths of the P-wave velocity and of the short wavelengths of the P-wave impedance has been obtained, the data residuals should essentially contain information on S-waves (essentially P-S and S-P converted waves). Once the corresponding model of S-wave velocity (long wavelengths) and S-wave impedance (short wavelengths) has been obtained, and if the remaining residuals still contain information, an optimization for density should be performed (the short wavelengths of impedances do not give independent information on density and velocity independently). Because the problem is nonlinear, the whole process should be iterated to convergence; however, the information from each parameter should be independent enough for an interesting first solution.


Sign in / Sign up

Export Citation Format

Share Document