Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

2017 ◽  
Vol 212 (3) ◽  
pp. 2003-2015 ◽  
Author(s):  
Fei Gong ◽  
Bangrang Di ◽  
Jianxin Wei ◽  
Pinbo Ding ◽  
Da Shuai
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Jingjiu Bi ◽  
Xuguang Li ◽  
Jie Liu ◽  
Yanjie Feng

Shale gas is the most important new energy source in the field of energy, and its exploitation is very important. The research on the dynamic mechanical properties of shale is the premise of exploitation. To study the dynamic mechanical properties of shale from the Changning-Weiyuan area of Sichuan Province, China, under confining pressure, we used a split Hopkinson pressure bar (SHPB) test system with an active containment device to carry out dynamic compression tests on shale with different bedding angles. (1) With active confining pressure, the shale experiences a high strain rate, and its stress-strain curve exhibits obvious plastic deformation. (2) For the same impact pressure, the peak stress of shale describes a U-shaped curve with an increasing bedding angle; besides, the peak stress of shale with different bedding angles increases linearly with rising confining pressure. The strain rate shows a significant confining pressure enhancement effect. With active confining pressure, the peak strain gradually decreases as the bedding angle increases. (3) As a result of the influence of different bedding angles, the dynamic elastic modulus of shale has obvious anisotropic characteristics. Shale with different bedding angles exhibits different rates of increase in the dynamic elastic modulus with rising confining pressure, which may be related to differences in the development of planes of weakness in the shale. The results of this study improve our understanding of the behavior of bedded shale under stress.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hui Li ◽  
Chi Dong ◽  
Hongwei Yu ◽  
Xin Zhao ◽  
Yan Li ◽  
...  

Rock mechanical properties are critical for drilling, wellbore stability, and well stimulation. There are usually two laboratory methods to determine rock mechanical properties: static compression tests and acoustic velocity measurements. Rocks are heterogeneous, so there are significant differences between static elastic constants and the corresponding dynamic ones. Usually, static test results are more representative than dynamic methods but the static tests are time consuming and costly. Dynamic methods are nondestructive and less expensive, which are practical in the laboratory and field. In this paper, we compare the static and dynamic elastic properties of Eagle Ford Shale by triaxial compressive tests and ultrasonic velocity tests. Correlations between static and dynamic elastic properties are developed. Conversion from dynamic mechanical properties to static mechanical properties is established for better estimating reservoir mechanical properties. To better understand the relationship of static and dynamic mechanical properties, 30 Eagle Ford Shale samples were tested. According to the test results, the dynamic properties are considerably different from the static counterparts. For all tested samples, static Young’s modulus is lower than dynamic Young’s modulus, ranging from 55% to 90%. The difference of the static and dynamic Young’s moduli decreases with the increasing of confining pressure. The reason may be because the microcracks closed in high confining pressure. Correlations between static and dynamic Young’s modulus are developed by regression analysis, which are crucial to understand the rock mechanical properties and forecast reservoir performance when direct measurement of static mechanical properties is not available or expensive. There are no strong correlations between static and dynamic Poisson’s ratios observed for the tested samples. Two potentially major reasons for the discrepancy of the static and dynamic properties of Eagle Ford Shale are discussed. Lithology and heterogeneity may be the inherent reasons, and external causes are probably the difference in strain amplitude and frequency.


2020 ◽  
Vol 10 (21) ◽  
pp. 7684
Author(s):  
Wenbiao Liang ◽  
Junhai Zhao ◽  
Yan Li ◽  
Yue Zhai ◽  
Zhou Wang ◽  
...  

The dynamic mechanical properties of basalt fiber reinforced concrete (BFRC) with different fiber contents (0.0%, 0.1%, 0.2%, 0.3%, 0.4%), confining pressures (0 MPa, 5 MPa, 10 MPa, 15 MPa) and exposed to different temperatures (20 °C, 200 °C, 400 °C, 600 °C, 800 °C) were investigated by using a 50 mm split Hopkinson pressure bar (SHPB) apparatus, and the factors such as fiber content, temperature and confining pressure effect on the dynamic mechanical properties were analyzed. The results show that the dynamic peak stress increases first and then decreases with the increase of fiber content. At different temperatures, the peak stress and its corresponding strain correspond to different fiber content, and the optimal fiber content is between 0.1% and 0.3%. When the temperature was from 20 °C to 400 °C, the dynamic peak stress decreased less, while when the temperature reached 600 °C and 800 °C, the dynamic peak stress decreased greatly. The confining pressure can significantly increase the dynamic peak stress and change the crushing morphology of specimens. The damage variable was built based on the Weibull distribution. A dynamic damage constitutive model combining statistical damage and viscoelastic model was established based on component combination model. The fitting curve of this model fitted well with test curve by identifying fewer undetermined parameters compared with Zhu-Wang-Tang (ZWT) model; therefore, this model can well describe the dynamic properties of BFRC under impact load.


2015 ◽  
Vol 37 (2) ◽  
pp. 162-167
Author(s):  
V.A. Vilensky ◽  
◽  
L.V. Kobrina ◽  
S.V. Riabov ◽  
Y.Y. Kercha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document