scholarly journals Vertical force scaling in seismic source models of underground nuclear explosions

2020 ◽  
Vol 221 (1) ◽  
pp. 251-264
Author(s):  
Michael Howe ◽  
Göran Ekström ◽  
Paul G Richards

SUMMARY We have reanalysed observations of body waves and surface waves for 71 well-recorded underground nuclear explosions (UNEs) that were conducted between 1977 and 1989 at the Balapan subregion of the Semipalatinsk Test Site in Kazakhstan. To reconcile differences between body-wave and surface-wave amplitudes, we solve for a scaling factor between vertical and horizontal forces in the explosion model. We find that the estimated scaling factor is anticorrelated with the scaled depth of burial for the subset of UNEs at Balapan that have published depths. The observed anticorrelation and the inferred variations in force scaling suggest that recorded surface-wave amplitudes are significantly influenced by UNE burial depth as well as by previously recognized tectonic release. As part of our analysis, we revisit the relationship between teleseismic mb(P) and yield for UNEs at Balapan, and discuss the physical basis for effectiveness of the mb–MS discriminant.

1983 ◽  
Vol 73 (2) ◽  
pp. 593-613
Author(s):  
Terry C. Wallace ◽  
Donald V. Helmberger ◽  
Gladys R. Engen

abstract In this paper, we study the long-period body waves at regional and upper mantle distances from large underground nuclear explosions at Pahute Mesa, Nevada Test Site. A comparison of the seismic records from neighboring explosions shows that the more recent events have much simpler waveforms than those of the earlier events. In fact, many of the early events produced waveforms which are very similar to those produced by shallow, moderate-size, strike-slip earthquakes; the phase sP is particularly obvious. The waveforms of these explosions can be modeled by assuming that the explosion is accompanied by tectonic release represented by a double couple. A clear example of this phenomenon is provided by a comparison of GREELEY (1966) and KASSERI (1975). These events are of similar yields and were detonated within 2 km of each other. The GREELEY records can be matched by simply adding synthetic waveforms appropriate for a shallow strike-slip earthquake to the KASSERI observations. The tectonic release for GREELEY has a moment of 5 ՠ1024 dyne-cm and is striking approximately 340°. The identification of the sP phase at upper mantle distances indicates that the source depth is 4 km or less. The tectonic release time function has a short duration (less than 1 sec). A comparison of these results with well-studied strike-slip earthquakes on the west coast and eastern Nevada indicate that, if tectonic release is triggered fault motion, then the tectonic release is relatively high stress drop, on the order of several hundred bars. It is possible to reduce these stress drops by a factor of 2 if the tectonic release is a driven fault; i.e., rupturing with the P velocity. The region in which the stress is released for a megaton event has a radius of about 4 km. Pahute Mesa events which are detonated within this radius of a previous explosion have a substantially reduced tectonic release.


1969 ◽  
Vol 59 (5) ◽  
pp. 2071-2078
Author(s):  
Tom Landers ◽  
Jon F. Claerbout

abstract The inability of simple layered models to fit both Rayleigh wave and Love wave data has led to the proposal of an upper mantle interleaved with thin soft horizontal layers. Since surface-wave dispersion is not sensitive to the distribution of soft material but only to the fraction of soft material a variety of models is possible. The solution to this indeterminancy is found through body-wave analysis. It is shown that body waves are dispersed according to the thinness and softness of the layers. Three models, each of which satisfy all surface-wave data, are examined. Transmission seismograms calculated for these models show one to be impossible, one improbable and the other possible. Synthesis of the seismograms is accomplished through the use of time domain theory as the complicated frequency response of the models makes a frequency oriented Haskell-Thompson approach impractical.


1971 ◽  
Vol 61 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Gary Boucher ◽  
Stephen D. Malone ◽  
E. Fred Homuth

abstract The University of Nevada's three-component quartz-rod strain meter installation at Round Mountain, Nevada (38°42.1′N, 117°04.6′W) has recorded a number of underground nuclear explosions at the Nevada Test Site, beginning with the megaton-sized JORUM event September 16 1969. Both that explosion and the larger HANDLEY event on March 26 1970 produced static strain offsets of a few parts in 109 at Round Mountain. These offsets did not decay within the first few hours after the explosions. In both cases, the strain offsets were in the sense of ground extension radial to the shot point, which is inconsistent with the assumption of a pure compressive source of strain. The strain-change ellipse for the HANDLEY event was found to have a major strain axis of 11 × 10−9 extensional, oriented N 34°W, and a minor axis of 7.4 × 10−9 compressional. A single-component strain meter at Mina, Nevada, (38°26.3′N, 118°9.3′W) was operated for the HANDLEY event, and recorded a strain offset of 2.6 × 10−9 in the direction N 74°E. Strain offsets at the time of the largest collapse events following HANDLEY were observed at Round Mountain. These offsets had the same sense on each component as those following the explosion itself. This is interpreted as support for the hypothesis that the strain changes are tectonic in origin, and the explosion initiates the strain release. Small offsets were observed for three smaller explosions out of a total of 13 studied. The relationship between body-wave magnitude mb and maximum dynamic strains at Round Mountain may be described empirically by the equation Log S = − 13.4 + 1.10 mb. Because of its high sensitivity and stability, the Round Mountain strain meter is capable of obtaining useful measurements of dynamic and static strain effects of intermediate- to large-sized explosions, at distances ranging from 160 to 200 km.


Author(s):  
Henglei Xu ◽  
Sidao Ni ◽  
Ping Jin ◽  
Shiban Ding ◽  
Hongchun Wang

ABSTRACT The mb :  Ms (mb vs. Ms) relationship is an important criterion for screening explosions from earthquakes and has been widely adopted in seismological monitoring by the Comprehensive Nuclear-Test-Ban Treaty Organization. In general, the earthquakes have larger Ms than the underground explosions with equivalent mb. However, it has been reported that this recognition criterion failed to identify some explosions at the North Korea nuclear test site. In this study, we investigate the potential effects of secondary source components, including the compensated linear vector dipole (CLVD) and double-couple (DC) sources, on mb and Ms magnitude measurements and the physical mechanism of the mb :  Ms recognition criterion by calculating synthetic seismograms. The results show an apparent critical body-wave magnitude of 5 when using the mb :  Ms method to discriminate North Korean underground nuclear explosions. The Ms measurements decrease as the CLVD components increase, whereas the effects from the DC source can be neglected. Small events, such as the first five North Korean nuclear tests, generate weak CLVD components, leading to the failure of mb :  Ms-based discrimination, whereas the last event, with a larger magnitude, caused extensive damage and hence can be successfully discriminated. In addition, the large difference between the source spectrum of explosions and those of earthquakes might be another important factor in the successful mb :  Ms-based discrimination of the sixth North Korean nuclear test.


1964 ◽  
Vol 54 (6A) ◽  
pp. 1981-1996 ◽  
Author(s):  
John Dowling ◽  
Otto Nuttli

abstract Velocities within the earth can be determined from body wave time-distance (T-D) data by the Herglotz-Wiechert method provided the velocity does not decrease too rapidly with depth. Until the present time, the properties of T-D curves for rapid decreases of velocity with depth have been considered only qualitatively. This paper presents a technique for calculating a T-D curve for any velocity distribution, including continuous and discontinuous increases and decreases of velocity with depth. Some properties of T-D curves are quantitatively studied by systematically varying the characteristics of a single model and noting the corresponding variations in the calculated T-D curves. From this it is concluded that a significant low-velocity channel may not be evidenced by a shadow zone but rather by an overlapping of two distinct branches of the T-D curve. It is further concluded that the presence of a shadow zone implies a very gentle velocity gradient below the low-velocity channel. By fitting a calculated T-D curve to observed data one can determine velocity as a function of depth even when the velocity decreases rapidly with depth, when a low-velocity channel exists. Observed T-D data for two underground nuclear explosions (gnome and bilby) measured in four different azimuths were fitted with T-D curves calculated for assumed velocity distributions. It is concluded that these data can be satisfied by a low-velocity channel for P waves in the upper mantle. The character of this channel (depth, thickness and velocity) was determined in each azimuth. The depth to its top was shallow (70 ± km) in the western U.S. and deep (125 ± km) in the eastern U.S. The velocity gradient below the channel is sharp enough to produce no prominent shadow zones. There are significant lateral changes in upper mantle velocities in the western U. S.


1982 ◽  
Vol 72 (4) ◽  
pp. 1093-1109
Author(s):  
Jeffrey W. Given ◽  
Terry C. Wallace ◽  
Hiroo Kanamori

abstract The source mechanisms of the three largest events of the 1980 Mammoth Lakes earthquake sequence have been determined using surface waves recorded on the global digital seismograph network and the long-period body waves recorded on the WWSSN network. Although the fault-plane solutions from local data (Cramer and Toppozada, 1980; Ryall and Ryall, 1981) suggest nearly pure left-lateral strike-slip on north-south planes, the teleseismic waveforms require a mechanism with oblique slip. The first event (25 May 1980, 16h 33m 44s) has a mechanism with a strike of N12°E, dip of 50°E, and a rake of −35°. The second event (27 May 19h 44m 51s) has a mechanism with a strike of N15°E, dip of 50°, and a slip of −11°. The third event (27 May, 14h 50m 57s) has a mechanism with a strike of N22°E, dip of 50°, and a rake of −28°. The first event is the largest and has a moment of 2.9 × 1025 dyne-cm. The second and third events have moments of 1.3 and 1.1 × 1025 dyne-cm, respectively. The body- and surface-wave moments for the first and third events agree closely while for the second event the body-wave moment (approximately 0.6 × 1025 dyne-cm) is almost a factor of 3 smaller than the surface-wave moment. The principal axes of extension of all three events is in the approximate direction of N65°E which agrees with the structural trends apparent along the eastern front of the Sierra Nevada.


1970 ◽  
Vol 60 (2) ◽  
pp. 503-516 ◽  
Author(s):  
David von Seggern

abstract With a double-couple force system as a model of an earthquake source mechanism, the radiation pattern theory of Ben-Menahem is employed to show that the far-field measurement of its strength can theoretically vary by more than a magnitude unit using either surface waves or body waves depending upon the angles of slip motion and fault dip for a source at a constant depth. The magnitude values determined by surface and body waves do not change linearly in relation to slip and dip angles nor do they change linearly in relation to one another. Random selection of locations within the radiation pattern is used to determine the extent of scatter in magnitude determinations which could be attributed to station distribution relative to the source. The scatter in surface-wave versus body-wave magnitude plots for earthquakes could be severe if only a few stations are used to obtain average magnitude values. A method of obtaining consistent estimates of surface-wave magnitude in practice is discussed.


Sign in / Sign up

Export Citation Format

Share Document