scholarly journals DOCK3 is a dosage-sensitive regulator of skeletal muscle and Duchenne muscular dystrophy-associated pathologies

2020 ◽  
Vol 29 (17) ◽  
pp. 2855-2871
Author(s):  
Andrea L Reid ◽  
Yimin Wang ◽  
Adrienne Samani ◽  
Rylie M Hightower ◽  
Michael A Lopez ◽  
...  

Abstract DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. Utilizing Dock3 global knockout (Dock3 KO) mice, we found that the haploinsufficiency of Dock3 in Duchenne muscular dystrophy mice improved dystrophic muscle pathologies; however, complete loss of Dock3 worsened muscle function. Adult Dock3 KO mice have impaired muscle function and Dock3 KO myoblasts are defective for myogenic differentiation. Transcriptomic analyses of Dock3 KO muscles reveal a decrease in myogenic factors and pathways involved in muscle differentiation. These studies identify DOCK3 as a novel modulator of muscle health and may yield therapeutic targets for treating dystrophic muscle symptoms.

2020 ◽  
Author(s):  
Andrea L. Reid ◽  
Yimin Wang ◽  
Adrienne Samani ◽  
Rylie M. Hightower ◽  
Michael A. Lopez ◽  
...  

AbstractDOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that function to regulate cell migration, fusion, and overall viability. Previously, we identified a miR-486/Dock3 signaling cascade that was dysregulated in dystrophin-deficient muscle which resulted in the overexpression of DOCK3, however not much else is known about the role of DOCK3 in muscle. In this work, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. By utilizing Dock3 global knockout (Dock3 KO) mice, we found reducing Dock3 gene via haploinsufficiency in DMD mice improved dystrophic muscle histology, however complete loss of Dock3 worsened overall muscle function on a dystrophin-deficient background. Consistent with this, Dock3 KO mice have impaired muscle architecture and myogenic differentiation defects. Moreover, transcriptomic analyses of Dock3 knockout muscles reveal a decrease in factors known for myogenesis, suggesting a possible mechanism of action. These studies identify DOCK3 as a novel modulator of muscle fusion and muscle health and may yield additional therapeutic targets for treating dystrophic muscle symptoms.


2017 ◽  
Vol 74 (13) ◽  
pp. 2487-2501 ◽  
Author(s):  
S. Lecompte ◽  
M. Abou-Samra ◽  
R. Boursereau ◽  
L. Noel ◽  
S. M. Brichard

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Segatto ◽  
Roberta Szokoll ◽  
Raffaella Fittipaldi ◽  
Cinzia Bottino ◽  
Lorenzo Nevi ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) affects 1 in 3500 live male births. To date, there is no effective cure for DMD, and the identification of novel molecular targets involved in disease progression is important to design more effective treatments and therapies to alleviate DMD symptoms. Here, we show that protein levels of the Bromodomain and extra-terminal domain (BET) protein BRD4 are significantly increased in the muscle of the mouse model of DMD, the mdx mouse, and that pharmacological inhibition of the BET proteins has a beneficial outcome, tempering oxidative stress and muscle damage. Alterations in reactive oxygen species (ROS) metabolism are an early event in DMD onset and they are tightly linked to inflammation, fibrosis, and necrosis in skeletal muscle. By restoring ROS metabolism, BET inhibition ameliorates these hallmarks of the dystrophic muscle, translating to a beneficial effect on muscle function. BRD4 direct association to chromatin regulatory regions of the NADPH oxidase subunits increases in the mdx muscle and JQ1 administration reduces BRD4 and BRD2 recruitment at these regions. JQ1 treatment reduces NADPH subunit transcript levels in mdx muscles, isolated myofibers and DMD immortalized myoblasts. Our data highlight novel functions of the BET proteins in dystrophic skeletal muscle and suggest that BET inhibitors may ameliorate the pathophysiology of DMD.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1119
Author(s):  
Aleksandra Klimczak ◽  
Agnieszka Zimna ◽  
Agnieszka Malcher ◽  
Urszula Kozlowska ◽  
Katarzyna Futoma ◽  
...  

Duchenne muscular dystrophy (DMD) is a genetic disorder associated with a progressive deficiency of dystrophin that leads to skeletal muscle degeneration. In this study, we tested the hypothesis that a co-transplantation of two stem/progenitor cell populations, namely bone marrow-derived mesenchymal stem cells (BM-MSCs) and skeletal muscle-derived stem/progenitor cells (SM-SPCs), directly into the dystrophic muscle can improve the skeletal muscle function of DMD patients. Three patients diagnosed with DMD, confirmed by the dystrophin gene mutation, were enrolled into a study approved by the local Bioethics Committee (no. 79/2015). Stem/progenitor cells collected from bone marrow and skeletal muscles of related healthy donors, based on HLA matched antigens, were expanded in a closed MC3 cell culture system. A simultaneous co-transplantation of BM-MSCs and SM-SPCs was performed directly into the biceps brachii (two patients) and gastrocnemius (one patient). During a six-month follow-up, the patients were examined with electromyography (EMG) and monitored for blood kinase creatine level. Muscle biopsies were examined with histology and assessed for dystrophin at the mRNA and protein level. A panel of 27 cytokines was analysed with multiplex ELISA. We did not observe any adverse effects after the intramuscular administration of cells. The efficacy of BM-MSC and SM-SPC application was confirmed through an EMG assessment by an increase in motor unit parameters, especially in terms of duration, amplitude range, area, and size index. The beneficial effect of cellular therapy was confirmed by a decrease in creatine kinase levels and a normalised profile of pro-inflammatory cytokines. BM-MSCs may support the pro-regenerative potential of SM-SPCs thanks to their trophic, paracrine, and immunomodulatory activity. Both applied cell populations may fuse with degenerating skeletal muscle fibres in situ, facilitating skeletal muscle recovery. However, further studies are required to optimise the dose and timing of stem/progenitor cell delivery.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 395-402 ◽  
Author(s):  
A. Clerk ◽  
P.N. Strong ◽  
C.A. Sewry

Dystrophin, the 427 × 10(3) Mr product of the Duchenne muscular dystrophy (DMD) gene, was studied in human foetal skeletal muscle from 9 to 26 weeks of gestation. Dystrophin could be detected from at least 9 weeks of gestation at the sarcolemmal membrane of most myotubes, though there was differential staining with antibodies raised to various regions of the protein. Dystrophin immunostaining increased and became more uniform with age and by 26 weeks of gestation there was intense sarcolemmal staining of all myotubes. On a Western blot, a doublet of smaller relative molecular mass than that seen in adult tissue was detected in all foetuses studied. There was a gradual increase in abundance of the upper band from 9 to 26 weeks, and the lower band, although present in low amounts in young foetuses, increased significantly between 20 and 26 weeks of gestation. These data indicate that there are several specific isoforms of dystrophin present in developing skeletal muscle, though the role of these is unknown.


2015 ◽  
Vol 79 (4) ◽  
pp. 629-636 ◽  
Author(s):  
Cristi L. Galindo ◽  
Jonathan H. Soslow ◽  
Candice L. Brinkmeyer-Langford ◽  
Manisha Gupte ◽  
Holly M. Smith ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8016
Author(s):  
Shalini Murali Krishnan ◽  
Johannes Nordlohne ◽  
Lisa Dietz ◽  
Alexandros Vakalopoulos ◽  
Petra Haning ◽  
...  

Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder, affecting one in 3500 to 5000 boys worldwide. The NO-sGC-cGMP pathway plays an important role in skeletal muscle function, primarily by improving blood flow and oxygen supply to the muscles during exercise. In fact, PDE5 inhibitors have previously been investigated as a potential therapy for DMD, however, a large-scale Phase III clinical trial did not meet its primary endpoint. Since the efficacy of PDE5i is dependent on sufficient endogenous NO production, which might be impaired in DMD, we investigated if NO-independent sGC stimulators, could have therapeutic benefits in a mouse model of DMD. Male mdx/mTRG2 mice aged six weeks were given food supplemented with the sGC stimulator, BAY-747 (150 mg/kg of food) or food alone (untreated) ad libitum for 16 weeks. Untreated C57BL6/J mice were used as wild type (WT) controls. Assessments of the four-limb hang, grip strength, running wheel and serum creatine kinase (CK) levels showed that mdx/mTRG2 mice had significantly reduced skeletal muscle function and severe muscle damage compared to WT mice. Treatment with BAY-747 improved grip strength and running speed, and these mice also had reduced CK levels compared to untreated mdx/mTRG2 mice. We also observed increased inflammation and fibrosis in the skeletal muscle of mdx/mTRG2 mice compared to WT. While gene expression of pro-inflammatory cytokines and some pro-fibrotic markers in the skeletal muscle was reduced following BAY-747 treatment, there was no reduction in infiltration of myeloid immune cells nor collagen deposition. In conclusion, treatment with BAY-747 significantly improves several functional and pathological parameters of the skeletal muscle in mdx/mTRG2 mice. However, the effect size was moderate and therefore, more studies are needed to fully understand the potential treatment benefit of sGC stimulators in DMD.


Sign in / Sign up

Export Citation Format

Share Document