scholarly journals SCG10 promotes non-amyloidogenic processing of amyloid precursor protein by facilitating its trafficking to the cell surface

2013 ◽  
Vol 22 (24) ◽  
pp. 4888-4900 ◽  
Author(s):  
Jingjing Wang ◽  
Chunyan Shan ◽  
Wenyuan Cao ◽  
Chen Zhang ◽  
Junlin Teng ◽  
...  
2018 ◽  
Vol 137 (2) ◽  
pp. 146-153 ◽  
Author(s):  
Young-Jung Kim ◽  
Ji-Young Yoo ◽  
Ok-Soon Kim ◽  
Han-byeol Kim ◽  
Junghwa Ryu ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0255715
Author(s):  
Edward T. Parkin ◽  
Jessica E. Hammond ◽  
Lauren Owens ◽  
Matthew D. Hodges

The amyloid cascade hypothesis proposes that excessive accumulation of amyloid beta-peptides is the initiating event in Alzheimer’s disease. These neurotoxic peptides are generated from the amyloid precursor protein via sequential cleavage by β- and γ-secretases in the ’amyloidogenic’ proteolytic pathway. Alternatively, the amyloid precursor protein can be processed via the ’non-amyloidogenic’ pathway which, through the action of the α-secretase a disintegrin and metalloproteinase (ADAM) 10, both precludes amyloid beta-peptide formation and has the additional benefit of generating a neuroprotective soluble amyloid precursor protein fragment, sAPPα. In the current study, we investigated whether the orphan drug, dichloroacetate, could alter amyloid precursor protein proteolysis. In SH-SY5Y neuroblastoma cells, dichloroacetate enhanced sAPPα generation whilst inhibiting β–secretase processing of endogenous amyloid precursor protein and the subsequent generation of amyloid beta-peptides. Over-expression of the amyloid precursor protein partly ablated the effect of dichloroacetate on amyloidogenic and non-amyloidogenic processing whilst over-expression of the β-secretase only ablated the effect on amyloidogenic processing. Similar enhancement of ADAM-mediated amyloid precursor protein processing by dichloroacetate was observed in unrelated cell lines and the effect was not exclusive to the amyloid precursor protein as an ADAM substrate, as indicated by dichloroacetate-enhanced proteolysis of the Notch ligand, Jagged1. Despite altering proteolysis of the amyloid precursor protein, dichloroacetate did not significantly affect the expression/activity of α-, β- or γ-secretases. In conclusion, dichloroacetate can inhibit amyloidogenic and promote non-amyloidogenic proteolysis of the amyloid precursor protein. Given the small size and blood-brain-barrier permeability of the drug, further research into its mechanism of action with respect to APP proteolysis may lead to the development of therapies for slowing the progression of Alzheimer’s disease.


2020 ◽  
Vol 34 (9) ◽  
pp. 12127-12146
Author(s):  
Po‐Fan Wu ◽  
Noopur Bhore ◽  
Yen‐Lurk Lee ◽  
Ju‐Yun Chou ◽  
Yun‐Wen Chen ◽  
...  

2015 ◽  
Vol 290 (19) ◽  
pp. 12048-12057 ◽  
Author(s):  
Chao Liu ◽  
Francis Chee Kuan Tan ◽  
Zhi-Cheng Xiao ◽  
Gavin S. Dawe

2017 ◽  
Vol 39 (6) ◽  
pp. 1085-1098
Author(s):  
Tongrong He ◽  
Ruohan Sun ◽  
Anantha VR Santhanam ◽  
Livius V d'Uscio ◽  
Tong Lu ◽  
...  

The mechanisms underlying dysfunction of cerebral microvasculature induced by type 1 diabetes (T1D) are not fully understood. We hypothesized that in cerebral microvascular endothelium, α-processing of amyloid precursor protein (APP) is impaired by T1D. In cerebral microvessels derived from streptozotocin (STZ)-induced T1D mice protein levels of APP and its α-processing enzyme, a disintegrin and metalloprotease 10 (ADAM10) were significantly decreased, along with down-regulation of adenylate cyclase 3 (AC3) and enhanced production of thromboxane A2 (TXA2). In vitro studies in human brain microvascular endothelial cells (BMECs) revealed that knockdown of AC3 significantly suppressed ADAM10 protein levels, and that activation of TXA2 receptor decreased APP expression. Furthermore, levels of soluble APPα (sAPPα, a product of α-processing of APP) were significantly reduced in hippocampus of T1D mice. In contrast, amyloidogenic processing of APP was not affected by T1D in both cerebral microvessels and hippocampus. Most notably, studies in endothelial specific APP knockout mice established that genetic inactivation of APP in endothelium was sufficient to significantly reduce sAPPα levels in the hippocampus. In aggregate, our findings suggest that T1D impairs non-amyloidogenic processing of APP in cerebral microvessels. This may exert detrimental effect on local concentration of neuroprotective molecule, sAPPα, in the hippocampus.


2001 ◽  
Vol 154 (4) ◽  
pp. 731-740 ◽  
Author(s):  
Philippe Cupers ◽  
Mustapha Bentahir ◽  
Katleen Craessaerts ◽  
Isabelle Orlans ◽  
Hugo Vanderstichele ◽  
...  

We investigated the relationship between PS1 and γ-secretase processing of amyloid precursor protein (APP) in primary cultures of neurons. Increasing the amount of APP at the cell surface or towards endosomes did not significantly affect PS1-dependent γ-secretase cleavage, although little PS1 is present in those subcellular compartments. In contrast, almost no γ-secretase processing was observed when holo-APP or APP-C99, a direct substrate for γ-secretase, were specifically retained in the endoplasmic reticulum (ER) by a double lysine retention motif. Nevertheless, APP-C99-dilysine (KK) colocalized with PS1 in the ER. In contrast, APP-C99 did not colocalize with PS1, but was efficiently processed by PS1-dependent γ-secretase. APP-C99 resides in a compartment that is negative for ER, intermediate compartment, and Golgi marker proteins. We conclude that γ-secretase cleavage of APP-C99 occurs in a specialized subcellular compartment where little or no PS1 is detected. This suggests that at least one other factor than PS1, located downstream of the ER, is required for the γ-cleavage of APP-C99. In agreement, we found that intracellular γ-secretase processing of APP-C99-KK both at the γ40 and the γ42 site could be restored partially after brefeldin A treatment. Our data confirm the “spatial paradox” and raise several questions regarding the PS1 is γ-secretase hypothesis.


Sign in / Sign up

Export Citation Format

Share Document