scholarly journals CGG repeats in RNA modulate expression of TDP-43 in mouse and fly models of fragile X tremor ataxia syndrome

2014 ◽  
Vol 23 (22) ◽  
pp. 5906-5915 ◽  
Author(s):  
Jocelyn N. Galloway ◽  
Chad Shaw ◽  
Peng Yu ◽  
Deena Parghi ◽  
Mickael Poidevin ◽  
...  
2021 ◽  
Vol 22 (16) ◽  
pp. 8368
Author(s):  
Luis M. Valor ◽  
Jorge C. Morales ◽  
Irati Hervás-Corpión ◽  
Rosario Marín

Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darren R. Hocking ◽  
Danuta Z. Loesch ◽  
Paige Stimpson ◽  
Flora Tassone ◽  
Anna Atkinson ◽  
...  

Introduction: Premutation expansions (55–200 CGG repeats) of the Fragile X Mental Retardation 1 (FMR1) gene on the X chromosome are associated with a range of clinical features. Apart from the most severe - Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) - where the most typical white matter changes affect cerebellar peduncles, more subtle changes may include impairment of executive functioning, affective disorders and/or subtle motor changes. Here we aimed to examine whether performance in selected components of executive functioning is associated with subclinical psychiatric symptoms in non-FXTAS, adult females carrying the FMR1 premutation.Methods and Sample: A total of 47 female premutation carriers (sub-symptomatic for FXTAS) of wide age range (26–77 years; M = 50.3; SD = 10.9) were assessed using standard neuropsychological tests, three motor rating scales and self-reported measures of psychiatric symptoms using the Symptom Checklist-90-Revised (SCL-90-R).Results: After adjusting for age and educational level where appropriate, both non-verbal reasoning and response inhibition as assessed on the Stroop task (i.e., the ability to resolve cognitive interference) were associated with a range of primary psychiatric symptom dimensions, and response inhibition uniquely predicted some primary symptoms and global psychiatric features. Importantly, lower scores (worse performance) in response inhibition were also strongly correlated with higher (worse) scores on standard motor rating scales for tremor-ataxia and for parkinsonism.Conclusion: These results provide evidence for the importance of response inhibition in the manifestation of psychiatric symptoms and subtle tremor-ataxia motor features, suggestive of the presence of early cerebellar changes in female premutation carriers.


Neuron ◽  
2017 ◽  
Vol 93 (2) ◽  
pp. 331-347 ◽  
Author(s):  
Chantal Sellier ◽  
Ronald A.M. Buijsen ◽  
Fang He ◽  
Sam Natla ◽  
Laura Jung ◽  
...  

2020 ◽  
Author(s):  
Yuan Zhang ◽  
M. Rebecca Glineburg ◽  
Venkatesha Basrur ◽  
Kevin Conlon ◽  
Deborah A. Hall ◽  
...  

AbstractRepeat associated non-AUG (RAN) translation of FMR1 5’ UTR CGG repeats produces toxic homo-polymeric proteins that accumulate within ubiquitinated inclusions in Fragile X-associated tremor/ataxia syndrome (FXTAS) patient brains and model systems. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG codon located just 5’ to the repeat. Methods to accurately measure FMRpolyG in FXTAS patients are lacking. Here we used data dependent acquisition (DDA) and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides (SIS) to identify potential signature FMRpolyG fragments in patient cells and tissues. Following immunoprecipitation (IP) enrichment, we detected FMRpolyG signature peptides by PRM in transfected cells, FXTAS human samples and patient derived stem cells, but not in controls. Surprisingly, we identified two amino-terminal peptides: one beginning with methionine (Ac-MEAPLPGGVR) initiating at an ACG, and a second beginning with threonine (Ac-TEAPLPGGVR), initiating at a GUG. Abundance of the threonine peptide was enhanced relative to the methionine peptide upon activation of the integrated stress response. In addition, loss of the eIF2 alternative factor, eIF2A, or enhanced expression of initiation factor eIF1, preferentially suppressed GUG initiated FMRpolyG synthesis. These data demonstrate that FMRpolyG is quantifiable in human samples and that RAN translation on FMR1 initiates at specific near cognate codons dependent on available initiation factors and cellular environment.


2021 ◽  
Vol 7 (3) ◽  
pp. 180-183
Author(s):  
Shahin Koohmanaee ◽  
◽  
Fatemeh Kharaee ◽  
Reza Bayat ◽  
Maryam Shahrokhi ◽  
...  

Background: Different alleles of Fragile X Mental Retardation1 (FMR1) gene with separate molecular etiologies cause Fragile X Syndrome (FXS) and Fragile X-associated Tremor and Ataxia Syndrome (FXTAS). Premutation alleles with 55 to 200 repeats in the FMR1 gene lead to FXTAS. It is carried by 1 in 209 women and 1 in 430 men. FXTAS commonly appears in 50- to 70-year-old adults. Case Presentation: An 11 months old boy was referred to the hospital due to clinical presentations of productive cough seizure, mental disability, and ataxia. Magnetic Resonance Imaging (MRI), Electroencephalography (EEG), hematology, biochemistry, hormone, and genetic tests were done. Triplet repeat PCR (TP PCR) showed 99 CGG repeats as permutation alleles. Conclusion: In this study, the authors reported the early onset of FXTAS in an 11 months old boy for the first time.


2015 ◽  
Vol 24 (15) ◽  
pp. 4317-4326 ◽  
Author(s):  
Seok Yoon Oh ◽  
Fang He ◽  
Amy Krans ◽  
Michelle Frazer ◽  
J. Paul Taylor ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dale J. Annear ◽  
Geert Vandeweyer ◽  
Ellen Elinck ◽  
Alba Sanchis-Juan ◽  
Courtney E. French ◽  
...  

AbstractExpanded CGG-repeats have been linked to neurodevelopmental and neurodegenerative disorders, including the fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). We hypothesized that as of yet uncharacterised CGG-repeat expansions within the genome contribute to human disease. To catalogue the CGG-repeats, 544 human whole genomes were analyzed. In total, 6101 unique CGG-repeats were detected of which more than 93% were highly variable in repeat length. Repeats with a median size of 12 repeat units or more were always polymorphic but shorter repeats were often polymorphic, suggesting a potential intergenerational instability of the CGG region even for repeats units with a median length of four or less. 410 of the CGG repeats were associated with known neurodevelopmental disease genes or with strong candidate genes. Based on their frequency and genomic location, CGG repeats may thus be a currently overlooked cause of human disease.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1633
Author(s):  
Bruce E. Hayward ◽  
Karen Usdin

The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5′ UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54–200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.


Author(s):  
Richard A. Walsh

Fragile X-associated tremor ataxia syndrome is a heredodegenerative syndrome that presents in older men as a tremor syndrome with less prominent ataxia and cognitive impairment initially. The underlying genetic cause, a premutation in the FMR1 gene, results in a toxic accumulation of mRNA. The full mutation, a triple-repeat expansion of more than 200 CGG repeats, gives rise to a reduction in FMR1 protein expression and fragile X, a neurodevelopmental disorder that may be identified in successive male generations. The prevalence of carrier status is high in the general population, and it is likely that most movement disorders clinics will have one or more patients with this syndrome, potentially carrying a label of essential tremor.


Sign in / Sign up

Export Citation Format

Share Document