scholarly journals Early Onset of Fragile X Associated Tremor and Ataxia Syndrome: A Case Report from Iran

2021 ◽  
Vol 7 (3) ◽  
pp. 180-183
Author(s):  
Shahin Koohmanaee ◽  
◽  
Fatemeh Kharaee ◽  
Reza Bayat ◽  
Maryam Shahrokhi ◽  
...  

Background: Different alleles of Fragile X Mental Retardation1 (FMR1) gene with separate molecular etiologies cause Fragile X Syndrome (FXS) and Fragile X-associated Tremor and Ataxia Syndrome (FXTAS). Premutation alleles with 55 to 200 repeats in the FMR1 gene lead to FXTAS. It is carried by 1 in 209 women and 1 in 430 men. FXTAS commonly appears in 50- to 70-year-old adults. Case Presentation: An 11 months old boy was referred to the hospital due to clinical presentations of productive cough seizure, mental disability, and ataxia. Magnetic Resonance Imaging (MRI), Electroencephalography (EEG), hematology, biochemistry, hormone, and genetic tests were done. Triplet repeat PCR (TP PCR) showed 99 CGG repeats as permutation alleles. Conclusion: In this study, the authors reported the early onset of FXTAS in an 11 months old boy for the first time.

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1633
Author(s):  
Bruce E. Hayward ◽  
Karen Usdin

The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5′ UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54–200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.


2021 ◽  
Vol 22 (16) ◽  
pp. 8368
Author(s):  
Luis M. Valor ◽  
Jorge C. Morales ◽  
Irati Hervás-Corpión ◽  
Rosario Marín

Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.


2014 ◽  
Vol 23 (22) ◽  
pp. 5906-5915 ◽  
Author(s):  
Jocelyn N. Galloway ◽  
Chad Shaw ◽  
Peng Yu ◽  
Deena Parghi ◽  
Mickael Poidevin ◽  
...  

1996 ◽  
Vol 43 (2) ◽  
pp. 383-388
Author(s):  
M Milewski ◽  
M Zygulska ◽  
J Bal ◽  
W H Deelen ◽  
E Obersztyn ◽  
...  

The unstable DNA sequence in the FMR1 gene was analyzed in 85 individuals from Polish families with fragile X syndrome in order to characterize mutations responsible for the disease in Poland. In all affected individuals classified on the basis of clinical features and expression of the fragile site at X(q27.3) a large expansion of the unstable sequence (full mutation) was detected. About 5% (2 of 43) of individuals with full mutation did not express the fragile site. Among normal alleles, ranging in size from 20 to 41 CGG repeats, allele with 29 repeats was the most frequent (37%). Transmission of premutated and fully mutated alleles to the offspring was always associated with size increase. No change in repeat number was found when normal alleles were transmitted.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darren R. Hocking ◽  
Danuta Z. Loesch ◽  
Paige Stimpson ◽  
Flora Tassone ◽  
Anna Atkinson ◽  
...  

Introduction: Premutation expansions (55–200 CGG repeats) of the Fragile X Mental Retardation 1 (FMR1) gene on the X chromosome are associated with a range of clinical features. Apart from the most severe - Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) - where the most typical white matter changes affect cerebellar peduncles, more subtle changes may include impairment of executive functioning, affective disorders and/or subtle motor changes. Here we aimed to examine whether performance in selected components of executive functioning is associated with subclinical psychiatric symptoms in non-FXTAS, adult females carrying the FMR1 premutation.Methods and Sample: A total of 47 female premutation carriers (sub-symptomatic for FXTAS) of wide age range (26–77 years; M = 50.3; SD = 10.9) were assessed using standard neuropsychological tests, three motor rating scales and self-reported measures of psychiatric symptoms using the Symptom Checklist-90-Revised (SCL-90-R).Results: After adjusting for age and educational level where appropriate, both non-verbal reasoning and response inhibition as assessed on the Stroop task (i.e., the ability to resolve cognitive interference) were associated with a range of primary psychiatric symptom dimensions, and response inhibition uniquely predicted some primary symptoms and global psychiatric features. Importantly, lower scores (worse performance) in response inhibition were also strongly correlated with higher (worse) scores on standard motor rating scales for tremor-ataxia and for parkinsonism.Conclusion: These results provide evidence for the importance of response inhibition in the manifestation of psychiatric symptoms and subtle tremor-ataxia motor features, suggestive of the presence of early cerebellar changes in female premutation carriers.


Neuron ◽  
2017 ◽  
Vol 93 (2) ◽  
pp. 331-347 ◽  
Author(s):  
Chantal Sellier ◽  
Ronald A.M. Buijsen ◽  
Fang He ◽  
Sam Natla ◽  
Laura Jung ◽  
...  

2020 ◽  
Author(s):  
Yuan Zhang ◽  
M. Rebecca Glineburg ◽  
Venkatesha Basrur ◽  
Kevin Conlon ◽  
Deborah A. Hall ◽  
...  

AbstractRepeat associated non-AUG (RAN) translation of FMR1 5’ UTR CGG repeats produces toxic homo-polymeric proteins that accumulate within ubiquitinated inclusions in Fragile X-associated tremor/ataxia syndrome (FXTAS) patient brains and model systems. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG codon located just 5’ to the repeat. Methods to accurately measure FMRpolyG in FXTAS patients are lacking. Here we used data dependent acquisition (DDA) and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides (SIS) to identify potential signature FMRpolyG fragments in patient cells and tissues. Following immunoprecipitation (IP) enrichment, we detected FMRpolyG signature peptides by PRM in transfected cells, FXTAS human samples and patient derived stem cells, but not in controls. Surprisingly, we identified two amino-terminal peptides: one beginning with methionine (Ac-MEAPLPGGVR) initiating at an ACG, and a second beginning with threonine (Ac-TEAPLPGGVR), initiating at a GUG. Abundance of the threonine peptide was enhanced relative to the methionine peptide upon activation of the integrated stress response. In addition, loss of the eIF2 alternative factor, eIF2A, or enhanced expression of initiation factor eIF1, preferentially suppressed GUG initiated FMRpolyG synthesis. These data demonstrate that FMRpolyG is quantifiable in human samples and that RAN translation on FMR1 initiates at specific near cognate codons dependent on available initiation factors and cellular environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Areerat Hnoonual ◽  
Charunee Jankittunpaiboon ◽  
Pornprot Limprasert

Autism spectrum disorder (ASD) is a complex disorder with a heterogeneous etiology. Fragile X syndrome (FXS) is recognized as the most common single gene mutation associated with ASD. FXS patients show some autistic behaviors and may be difficult to distinguish at a young age from autistic children. However, there have been no published reports on the prevalence of FXS in ASD patients in Thailand. In this study, we present a pilot study to analyze the CGG repeat sizes of the FMR1 gene in Thai autistic patients. We screened 202 unrelated Thai patients (168 males and 34 females) with nonsyndromic ASD and 212 normal controls using standard FXS molecular diagnosis techniques. The distributions of FMR1 CGG repeat sizes in the ASD and normal control groups were similar, with the two most common alleles having 29 and 30 CGG repeats, followed by an allele with 36 CGG repeats. No FMR1 full mutations or premutations were found in either ASD individuals or the normal controls. Interestingly, three ASD male patients with high normal CGG and intermediate CGG repeats (44, 46, and 53 CGG repeats) were identified, indicating that the prevalence of FMR1 intermediate alleles in Thai ASD patients was approximately 1% while these alleles were absent in the normal male controls. Our study indicates that CGG repeat expansions of the FMR1 gene may not be a common genetic cause of nonsyndromic ASD in Thai patients. However, further studies for mutations other than the CGG expansion in the FMR1 gene are required to get a better information on FXS prevalence in Thai ASD patients.


2019 ◽  
Vol 15 (4) ◽  
pp. 251-258 ◽  
Author(s):  
Dragana Protic ◽  
Maria J. Salcedo-Arellano ◽  
Jeanne Barbara Dy ◽  
Laura A. Potter ◽  
Randi J. Hagerman

Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability with prevalence rates estimated to be 1:5,000 in males and 1:8,000 in females. The increase of >200 Cytosine Guanine Guanine (CGG) repeats in the 5’ untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene results in transcriptional silencing on the FMR1 gene with a subsequent reduction or absence of fragile X mental retardation protein (FMRP), an RNA binding protein involved in the maturation and elimination of synapses. In addition to intellectual disability, common features of FXS are behavioral problems, autism, language deficits and atypical physical features. There are still no currently approved curative therapies for FXS, and clinical management continues to focus on symptomatic treatment of comorbid behaviors and psychiatric problems. Here we discuss several treatments that target the neurobiological pathway abnormal in FXS. These medications are clinically available at present and the data suggest that these medications can be helpful for those with FXS.


Sign in / Sign up

Export Citation Format

Share Document