scholarly journals Regulation of phagolysosomal activity by miR-204 critically influences structure and function of retinal pigment epithelium/retina

2019 ◽  
Vol 28 (20) ◽  
pp. 3355-3368 ◽  
Author(s):  
Congxiao Zhang ◽  
Kiyoharu J Miyagishima ◽  
Lijin Dong ◽  
Aaron Rising ◽  
Malika Nimmagadda ◽  
...  

Abstract MicroRNA-204 (miR-204) is expressed in pulmonary, renal, mammary and eye tissue, and its reduction can result in multiple diseases including cancer. We first generated miR-204−/− mice to study the impact of miR-204 loss on retinal and retinal pigment epithelium (RPE) structure and function. The RPE is fundamentally important for maintaining the health and integrity of the retinal photoreceptors. miR-204−/− eyes evidenced areas of hyper-autofluorescence and defective photoreceptor digestion, along with increased microglia migration to the RPE. Migratory Iba1+ microglial cells were localized to the RPE apical surface where they participated in the phagocytosis of photoreceptor outer segments (POSs) and contributed to a persistent build-up of rhodopsin. These structural, molecular and cellular outcomes were accompanied by decreased light-evoked electrical responses from the retina and RPE. In parallel experiments, we suppressed miR-204 expression in primary cultures of human RPE using anti-miR-204. In vitro suppression of miR-204 in human RPE similarly showed abnormal POS clearance and altered expression of autophagy-related proteins and Rab22a, a regulator of endosome maturation. Together, these in vitro and in vivo experiments suggest that the normally high levels of miR-204 in RPE can mitigate disease onset by preventing generation of oxidative stress and inflammation originating from intracellular accumulation of undigested photoreactive POS lipids. More generally, these results implicate RPE miR-204-mediated regulation of autophagy and endolysosomal interaction as a critical determinant of normal RPE/retina structure and function.

1996 ◽  
Vol 109 (13) ◽  
pp. 3025-3034 ◽  
Author(s):  
A.D. Marmorstein ◽  
V.L. Bonilha ◽  
S. Chiflet ◽  
J.M. Neill ◽  
E. Rodriguez-Boulan

The retinal pigment epithelium (RPE) differs from other epithelia in that the apical surface is not free; instead, it interacts with both photoreceptors and a specialized extracellular material, the interphotoreceptor matrix. Biochemical characterization of the apical and basolateral surfaces of RPE in adult rat eye cups, using a novel in situ biotinylation assay, revealed very different protein compositions and identified a major surface antigen, RET-PE2, with a predominantly apical distribution (approximately 74%). The apical polarity of RET-PE2 was confirmed by immunofluorescence and laser scanning confocal microscopy. In striking contrast, RET-PE2 antigen was preferentially basolateral in primary cultures derived from adult rat RPE and in an immortalized RPE cell line (RPE-J). Under all conditions, RET-PE2 was highly soluble in Triton X-100 (> 81% at 4 degrees C), suggesting that its redistribution was not dependent on changes in cytoskeletal interactions. Analysis of the localization of RET-PE2 in normal rats at postnatal (PN) days 1, 7, and 14 indicated that RET-PE2 redistributes from predominantly basolateral to predominantly apical during that time. Since photoreceptors develop during the first two weeks after birth in the rat, our results suggest that the apical redistribution of RET-PE2 is dependent on the establishment of adult interactions between the RPE and the neural retina and/or the interphotoreceptor matrix, either via direct contacts or through alterations in the intracellular sorting patterns of RPE cells.


1993 ◽  
Vol 104 (1) ◽  
pp. 37-49 ◽  
Author(s):  
I.R. Nabi ◽  
A.P. Mathews ◽  
L. Cohen-Gould ◽  
D. Gundersen ◽  
E. Rodriguez-Boulan

Rat retinal pigment epithelial (RPE) cells were immortalized by infection with a temperature-sensitive tsA SV40 virus and following cloning and selection for epithelial properties the polarized RPE-J cell line was obtained. At the permissive temperature of 33 degrees C, RPE-J cells behave as an immortalized cell line. When RPE-J cells are grown on nitrocellulose filters coated with a thin layer of Matrigel in the presence of 10(−8) M retinoic acid for 6 days at 33 degrees C and then switched for 33–36 hours to the non-permissive temperature of 40 degrees C, they acquire a differentiated polarized RPE phenotype. Under these growth conditions, RPE-J cells exhibit circumferential staining for the tight-junction protein ZO-1 and acquire a transepithelial resistance of 350 ohms cm2. Morphologically, RPE-J cells exhibit a characteristic RPE morphology with extensive apical microvilli as well as numerous dense bodies including premelanosomes and varied multilamellar structures. Ruthenium red labeling revealed the frequent basal localization of the tight junction. The cells were identified to be of rat RPE origin by their expression of the rat RPE marker RET-PE2 and their ability to phagocytose latex beads. While RPE-J cells are capable of sorting influenza and vesicular stomatitis virus to the apical and basal surfaces, respectively, the Na,K-ATPase is not polarized and the neural cell adhesion molecule, N-CAM, is localized exclusively to the lateral surface. In vivo the apical surface of RPE interacts with the adjacent neural retina and the Na,K-ATPase and N-CAM are both apical; the altered polarity of these two proteins in RPE-J cells may be a consequence of the absence of apical interaction with the neural retina in culture. Previous studies of RPE have been restricted to the use of primary cultures and the RPE-J cell line should prove an excellent model system for the study of the mechanisms determining the characteristic polarity and functions of the retinal pigment epithelium.


2021 ◽  
Vol 12 ◽  
Author(s):  
Song Yang ◽  
Jun Zhou ◽  
Dengwen Li

The retinal pigment epithelium is a fundamental component of the retina that plays essential roles in visual functions. Damage to the structure and function of the retinal pigment epithelium leads to a variety of retinopathies, and there is currently no curative therapy for these disorders. Therefore, studying the relationship between the development, function, and pathobiology of the retinal pigment epithelium is important for the prevention and treatment of retinopathies. Here we review the function of the retinal pigment epithelium and its relevance to the pathobiology, and discuss potential strategies for the treatment of retinopathies. In doing so, we provide new viewpoints outlining new ideas for the future study and treatment of retinopathies.


2012 ◽  
Vol 29 (2) ◽  
pp. 83-93 ◽  
Author(s):  
MAREN ENGELHARDT ◽  
CHINATSU TOSHA ◽  
VANDA S. LOPES ◽  
BRYAN CHEN ◽  
LISA NGUYEN ◽  
...  

AbstractReplacement of retinal pigment epithelium (RPE) cells by transplantation is a potential treatment for some retinal degenerations. Here, we used a combination of invasive and noninvasive methods to characterize the structural and functional consequences of subretinal injection of RPE cells. Pigmented cells from primary cultures were injected into albino mice. Recovery was monitored over 8 weeks by fundus imaging, spectral domain optical coherence tomography (sdOCT), histology, and electroretinography (ERG). sdOCT showed that retinal reattachment was nearly complete by 1 week. ERG response amplitudes were reduced after injection, with cone-mediated function then recovering better than rod function. Photoreceptor cell loss was evident by sdOCT and histology, near the site of injection, and is likely to have been the main cause of incomplete recovery. With microscopy, injected cells were identified by the presence of apical melanosomes. They either established contact with Bruch’s membrane, and thus became part of the RPE monolayer, or were located on the apical surface of the host’s cells, resulting in apposition of the basal surface of the injected cell with the apical surface of the host cell and the formation of a series of desmosomal junctions. RPE cell density was not increased, indicating that the incorporation of an injected cell into the RPE monolayer was concomitant with the loss of a host cell. The transplanted and remaining host cells contained large vacuoles of ingested debris as well as lipofuscin-like granules, suggesting that they had scavenged the excess injected and host cells, and were stressed by the high digestive load. Therefore, although significant functional and structural recovery was observed, the consequences of this digestive stress may be a concern for longer-term health, especially where RPE cell transplantation is used to treat diseases that include lipofuscin accumulation as part of their pathology.


2008 ◽  
Vol 86 (4) ◽  
pp. 661-668 ◽  
Author(s):  
Karin Kobuch ◽  
Wolfgang A. Herrmann ◽  
Carsten Framme ◽  
Helmut G. Sachs ◽  
Veit-Peter Gabel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document