scholarly journals A chromosome-scale genome assembly for the holly (Ilex polyneura) provides insights into genomic adaptations to elevation in Southwest China

2022 ◽  
Vol 9 ◽  
Author(s):  
Xin Yao ◽  
Zhiqiang Lu ◽  
Yu Song ◽  
Xiaodi Hu ◽  
Richard T Corlett

Abstract Southwest China is a plant diversity hotspot. The near-cosmopolitan genus Ilex (c. 664 spp., Aquifoliaceae) reaches its maximum diversity in this region, with many narrow-range and a few widespread species. Divergent selection on widespread species leads to local adaptation, with consequences for both conservation and utilization, but is counteracted by geneflow. Many Ilex species are utilized as teas, medicines, ornamentals, honey plants, and timber, but variation below the species level is largely uninvestigated. We therefore studied the widespread Ilex polyneura, which occupies most of the elevational range available and is cultivated for its decorative leafless branches with persistent red fruits. We assembled a chromosome-scale genome using approximately 100x whole genome long-read and short-read sequencing combined with Hi-C sequencing. The genome is approximately 727.1 Mb, with a contig N50 size of 5 124 369 bp and a scaffold N50 size of 36 593 620 bp, for which the BUSCO score was 97.6%, and 98.9% of the assembly was anchored to 20 pseudochromosomes. Out of 32 838 genes predicted, 96.9% were assigned functions. Two whole genome duplication events were identified. Using this genome as a reference, we conducted a population genomics study of 112 individuals from 21 populations across the elevation range using restriction site-associated DNA sequencing (RADseq). Most populations clustered into four clades separated by distance and elevation. Selective sweep analyses identified 34 candidate genes potentially under selection at different elevations, with functions related to responses to abiotic and biotic stresses. This first high-quality genome in the Aquifoliales will facilitate the further domestication of the genus.

2011 ◽  
Vol 12 (7) ◽  
pp. 643-656 ◽  
Author(s):  
Ederson Akio Kido ◽  
Pedranne Kelle de Araujo Barbosa ◽  
Jose Ribamar Costa Ferreira Neto ◽  
Valesca Pandolfi ◽  
Laureen Michelle Houllou-Kido ◽  
...  

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chong Chu ◽  
Rebeca Borges-Monroy ◽  
Vinayak V. Viswanadham ◽  
Soohyun Lee ◽  
Heng Li ◽  
...  

AbstractTransposable elements (TEs) help shape the structure and function of the human genome. When inserted into some locations, TEs may disrupt gene regulation and cause diseases. Here, we present xTea (x-Transposable element analyzer), a tool for identifying TE insertions in whole-genome sequencing data. Whereas existing methods are mostly designed for short-read data, xTea can be applied to both short-read and long-read data. Our analysis shows that xTea outperforms other short read-based methods for both germline and somatic TE insertion discovery. With long-read data, we created a catalogue of polymorphic insertions with full assembly and annotation of insertional sequences for various types of retroelements, including pseudogenes and endogenous retroviruses. Notably, we find that individual genomes have an average of nine groups of full-length L1s in centromeres, suggesting that centromeres and other highly repetitive regions such as telomeres are a significant yet unexplored source of active L1s. xTea is available at https://github.com/parklab/xTea.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 258
Author(s):  
Karim Karimi ◽  
Duy Ngoc Do ◽  
Mehdi Sargolzaei ◽  
Younes Miar

Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size (Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink.


2015 ◽  
Vol 59 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Haitao Shi ◽  
Yongqiang Qian ◽  
Dun‐Xian Tan ◽  
Russel J. Reiter ◽  
Chaozu He

2018 ◽  
Vol 165 (2) ◽  
pp. 356-368 ◽  
Author(s):  
Sung D. Lim ◽  
Su-Hwa Kim ◽  
Simon Gilroy ◽  
John C. Cushman ◽  
Won-Gyu Choi

Sign in / Sign up

Export Citation Format

Share Document