P–572 Purifying selection for aneuploidy cells in mosaicism embryo at post-implantation stage

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
T Hayama ◽  
A Ijuin ◽  
H Ueno ◽  
H Hamada ◽  
A Miyakoshi ◽  
...  

Abstract Study question Why low ratio mosaicism embryos develop to normal karyotype babies? Summary answer Our in vitro implantation assay clarified purifying selection for aneuploid cells in post implantation embryos. What is known already There are some reports about healthy live birth after transfer of mosaic embryos, which was reported for the first time from Italy in 2015. It is also reported that the abnormal cell is screened with the mouse in the embryo development, and only a normal cell contributes to the development. But it has not been examined in human. Study design, size, duration To clarify the change of aneuploid cells and mitochondrial activity in human embryo, we biopsied several parts from one blastocyst and examined karyotype. After in vitro implantation assay for biopsied embryos, we compared the karyotype of biopsy sample with that of cultured cell mass. Participants/materials, setting, methods Under the ethical review of Yokohama City University and informed consent with patients, we collected human surplus blastocysts those are donated after successful clinical treatment or discarded because of poor development grade. We biopsied multiple parts from one blastocyst and cultured the biopsied embryos, and extracted whole DNA from the biopsy samples and cultured embryos. Karyotyping by next generation sequencing were performed. Main results and the role of chance We analyzed 34 samples from 11 embryos, including 25 biopsy sample from 11 embryos and 9 cell mass from 7 cultured embryos. In the karyotype tracking results, even though biopsy sample analysis before the culture were uniformed aneuploid or chromosome mosaic, the developing embryo cell mass had normal karyotype. In one embryo as an example, among the three biopsied extra trophectoderm samples from that, two of them were mosaic, and one of them had uniformed chromosome 21 trisomy and chromosome 16 mosaic monosomy. But the embryo formed multiple cell mass in implantation assay. We examined karyotype of three cell mass, and the result from all were normal karyotype. We suggested that the chromosome aberration cells were screened in the human embryo development, and when the function was not carried out the embryo stopped the development. Limitations, reasons for caution Because of small number of samples available, we need more samples for a more accurate evaluation. Furthermore, we cannot evaluate the absolute mechanism that cells with chromosome aberration decreases. Wider implications of the findings: Conventional PGT-A techniques are based on uniformed embryos developing hypothesized past time. As showed in some clinical reports, PGT-A can reduce of spontaneous abortion and chance of embryo transfer. Thinking about aneuploid cell purifying system in embryo development, effectiveness of PGT-A should be more questionable for infertility treatment. Trial registration number A200326004

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1272 ◽  
Author(s):  
Muhammad Idrees ◽  
Lianguang Xu ◽  
Seok-Hwan Song ◽  
Myeong-Don Joo ◽  
Kyeong-Lim Lee ◽  
...  

This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.


2020 ◽  
Vol 26 (6) ◽  
pp. 779-798
Author(s):  
Ana M Pereira Daoud ◽  
Mina Popovic ◽  
Wybo J Dondorp ◽  
Marc Trani Bustos ◽  
Annelien L Bredenoord ◽  
...  

Abstract BACKGROUND Studying the human peri-implantation period remains hindered by the limited accessibility of the in vivo environment and scarcity of research material. As such, continuing efforts have been directed towards developing embryo-like structures (ELS) from pluripotent stem cells (PSCs) that recapitulate aspects of embryogenesis in vitro. While the creation of such models offers immense potential for studying fundamental processes in both pre- and early post-implantation development, it also proves ethically contentious due to wide-ranging views on the moral and legal reverence due to human embryos. Lack of clarity on how to qualify and regulate research with ELS thus presents a challenge in that it may either limit this new field of research without valid grounds or allow it to develop without policies that reflect justified ethical concerns. OBJECTIVE AND RATIONALE The aim of this article is to provide a comprehensive overview of the existing scientific approaches to generate ELS from mouse and human PSCs, as well as discuss future strategies towards innovation in the context of human development. Concurrently, we aim to set the agenda for the ethical and policy issues surrounding research on human ELS. SEARCH METHODS The PubMed database was used to search peer-reviewed articles and reviews using the following terms: ‘stem cells’, ‘pluripotency’, ‘implantation’, ‘preimplantation’, ‘post-implantation’, ‘blastocyst’, ‘embryoid bodies’, ‘synthetic embryos’, ‘embryo models’, ‘self-assembly’, ‘human embryo-like structures’, ‘artificial embryos’ in combination with other keywords related to the subject area. The PubMed and Web of Science databases were also used to systematically search publications on the ethics of ELS and human embryo research by using the aforementioned keywords in combination with ‘ethics’, ‘law’, ‘regulation’ and equivalent terms. All relevant publications until December 2019 were critically evaluated and discussed. OUTCOMES In vitro systems provide a promising way forward for uncovering early human development. Current platforms utilize PSCs in both two- and three-dimensional settings to mimic various early developmental stages, including epiblast, trophoblast and amniotic cavity formation, in addition to axis development and gastrulation. Nevertheless, much hinges on the term ‘embryo-like’. Extension of traditional embryo frameworks to research with ELS reveals that (i) current embryo definitions require reconsideration, (ii) cellular convertibility challenges the attribution of moral standing on the basis of ‘active potentiality’ and (iii) meaningful application of embryo protective directives will require rethinking of the 14-day culture limit and moral weight attributed to (non-)viability. Many conceptual and normative (dis)similarities between ELS and embryos thus remain to be thoroughly elucidated. WIDER IMPLICATIONS Modelling embryogenesis holds vast potential for both human developmental biology and understanding various etiologies associated with infertility. To date, ELS have been shown to recapitulate several aspects of peri-implantation development, but critically, cannot develop into a fetus. Yet, concurrent to scientific innovation, considering the extent to which the use of ELS may raise moral concerns typical of human embryo research remains paramount. This will be crucial for harnessing the potential of ELS as a valuable research tool, whilst remaining within a robust moral and legal framework of professionally acceptable practices.


2019 ◽  
Vol 31 (12) ◽  
pp. 1758 ◽  
Author(s):  
Elaine M. Carnevale ◽  
Elizabeth S. Metcalf

Intracytoplasmic sperm injection (ICSI) is used to produce equine embryos invitro. The speed of embryo development invitro is roughly equivalent to what has been described for embryos produced invivo. Morphological evaluations of ICSI-produced embryos are complicated by the presence of debris and the dark nature of equine embryo cytoplasm. Morulas and early blastocysts produced invitro appear similar to those produced invivo. However, with expansion of the blastocyst, distinct differences are observed compared with uterine embryos. In culture, embryos do not undergo full expansion and thinning of the zona pellucida (ZP) or capsule formation. Cells of the inner cell mass (ICM) are dispersed, in contrast with the differentiated trophoblast and ICM observed in embryos collected from uteri. As blastocysts expand invitro, embryo cells often escape the ZP as organised or disorganised extrusions of cells, probably through the hole incurred during ICSI. Quality assessment of invitro-produced early stage equine embryos is in its infancy, because limited information is available regarding the relationship between morphology and developmental competence. Early embryo development invivo is reviewed in this paper, with comparisons made to embryo development invitro and clinical assessments from a laboratory performing commercial ICSI for >15 years.


1985 ◽  
Vol 442 (1 In Vitro Fert) ◽  
pp. 336-341 ◽  
Author(s):  
MICHELLE PLACHOT ◽  
JACQUELINE MANDELBAUM ◽  
ANNE-MARIE JUNCA ◽  
JACQUES SALAT-BAROUX ◽  
JEAN COHEN

2017 ◽  
Vol 29 (3) ◽  
pp. 621 ◽  
Author(s):  
Ricaurte Lopera-Vasquez ◽  
Meriem Hamdi ◽  
Veronica Maillo ◽  
Valeriano Lloreda ◽  
Pilar Coy ◽  
...  

To evaluate the effect of bovine oviductal fluid (OF) supplementation during in vitro culture of bovine embryos on their development and quality, in vitro-produced zygotes were cultured in synthetic oviductal fluid (SOF; negative control; C–) supplemented with OF or 5% fetal calf serum (positive control; C+). Embryo development was recorded on Days 7–9 after insemination and blastocyst quality was assessed through cryotolerance, differential cell counting of the inner cell mass and trophectoderm, and gene expression. OF was added to the culture medium at concentrations ranging from 0.625% to 25%. The higher OF concentrations (5%, 10% and 25%) had a detrimental effect on embryo development. Lower OF concentrations (1.25% and 0.625%) supported embryo development until Day 9 (27.5%) and produced higher-quality blastocysts, as reflected by their cryotolerance (53.6% and 57.7% survival at 72 h, respectively, vs 25.9% in C+) and total cell number (mean (± s.e.m.) 165.1 ± 4.7 and 156.2 ± 4.2, respectively, vs 127.7 ± 4.9 in C– and 143.1 ± 4.9 in C+). Consistent with these data, upregulation of the water channel aquaporin 3 (AQP3) mRNA was observed in blastocysts supplemented with 1.25% OF compared with C– and C+. Serum supplementation resulted in a reduction in the expression of glucose and lipid metabolism-related genes and downregulation of the epigenetic-related genes DNA methyltransferase 3A (DNMT3A) and insulin-like growth factor 2 receptor (IGF2R). In conclusion, in vitro culture with low concentrations of OF has a positive effect on the development and quality of bovine embryos.


2007 ◽  
Vol 19 (1) ◽  
pp. 189
Author(s):  
Y. H. Choi ◽  
H. D. Harding ◽  
A. D. Obermiller ◽  
K. Hinrichs

Oct-4 is a key transcription factor in the control of early embryonic development and maintenance of a pluripotent cell population. Variation in Oct-4 expression patterns during embryo development have been reported among species, and have been related to the time of placental development in those species. This study was conducted to investigate Oct-4 expression pattern during early embryonic development in the horse, a species with relatively delayed placentation. In vitro-produced embryos were obtained from in vitro-matured oocytes via fertilization by intracytoplasmic sperm injection. Ex vivo blastocysts were recovered from mares that had been artificially inseminated. Oct-4 status was determined by immunocytochemistry; photomicrographs were taken at 4 standardized settings to aid in qualitative comparison of the amount of fluorescence. A total of 106 oocytes and embryos were evaluated. Immature oocytes showed Oct-4 expression in the nucleus and cytoplasm, as did early-cleaved embryos (2 to 5 cells, 1 to 2 days). Oct-4 expression in embryos at 3 to 4 days (6 to 12 cells) decreased and was restricted to the cytoplasm. From 5 to 6 days (15 cells to morulae), Oct-4 intensity increased and was exclusively found in the nuclei. In vitro-produced blastocysts (7 to 8 days) expressed Oct-4 equivalently in the trophectoderm and inner cell mass nuclei; culture for 2 to 3 more days (10 to 11 days) did not alter Oct-4 expression. However, when in vitro-produced blastocysts were transferred to the uteri of mares and recovered after 2 to 3 days (IVP-ET), the embryos showed strong expression of Oct-4 within the inner cell mass and limited expression in the trophectoderm, and a similar pattern was seen for ex vivo-recovered embryos. In bigger embryos (such as a 1779-�m ex vivo embryo and a 1121-�m IVP-ET embryo), the trophectoderm lost staining completely. These results suggest that Oct-4 expression is present in both nucleus and cytoplasm in equine oocytes and early-cleaved embryos as a result of maternal mRNA accumulation. Oct-4 protein decreases over the first few days of embryonic development as these stores are used. The shift to greater expression, in the nucleus only, during further embryo development suggests embryonic genome activation. Oct-4 expression in the trophectoderm of in vitro-produced blastocysts was different from that in blastocysts that had been exposed to the uterus (both ex vivo and IVP-ET); this indicates that differentiation of the trophectoderm is dependent upon factors present in the uterine environment. The Oct-4 expression in the trophectoderm of in vitro-produced equine blastocysts thus appears to be an artifact due to in vitro culture; this finding may be applicable to the reported patterns of Oct-4 expression in embryos of other species. This work was supported by the Link Equine Research Endowment Fund, Texas A&M University.


2013 ◽  
Vol 25 (1) ◽  
pp. 179
Author(s):  
C. Díez ◽  
B. Trigal ◽  
J. N. Caamaño ◽  
M. Muñoz ◽  
E. Correia ◽  
...  

High hydrostatic pressure (HHP) treatment of immature porcine oocytes improves embryo development rates and cell numbers (Pribenszky et al. 2008 Anim. Reprod. Sci. 106, 200–207). However, it is unknown if similar effects can be obtained with bovine oocytes and how HHP affects cryopreservation of the developed blastocysts. In this work, we analyzed the effect of an HHP treatment (Cryo-Innovation Ltd., Budapest, Hungary) on bovine cumulus–oocyte complex (COC) as determined by their developmental ability and embryo quality. Immature COC were submitted to a pressure treatment (200 bar, 1 h at 37°C; HHP group; n = 643) in HEPES-buffered TCM199. Simultaneously, a group of COC was held at 37°C for 1 h (T group; n = 304) in HEPES-buffered TCM199, while other COC were untreated (n = 1182). After in vitro maturation, COC were fertilized in vitro (IVF) and cultured in modified SOF + 6 g L–1 BSA (Holm et al. 1999 Theriogenology 52, 683–700), and embryo development was recorded (5 replicates). Day 7 and 8 excellent- and good-quality embryos were selected for vitrification (cryologic vitrification method; Trigal et al. 2012 Theriogenology 10.1016/j.theriogenology.2012.06.018). After warming, vitrified blastocysts were cultured in modified SOF + 6 g L–1 BSA + 10% FCS for 48 h (3 replicates). Those blastocysts hatching after warming (at 24 and 48 h) were fixed and stained for differential cell counts. Data were analyzed by ANOVA and REGWQ test and are presented as least squares means ± standard error. The HHP-treated oocytes showed increased development rates on Day 3 (Day 3 ≥5-cell embryos: 64.5 ± 2.9a, 53.4 ± 3.9b, 56.7 ± 2.2b for HHP, T, and untreated groups, respectively; a v. b: P < 0.05); however, D8 blastocyst rates were not affected by the pressure treatment (28.5 ± 1.6, 26.4 ± 2.2, and 27.8 ± 1.3 for HHP, T, and untreated groups, respectively). Treatment did not affect survival rates to vitrification (2-h re-expansion rates: 100 ± 6.7, 100 ± 6.7, and 95.4 ± 6.7; 48-h hatching rates: 58.1 ± 9.4, 71.2 ± 9.4, and 62.3 ± 9.4, for HHP, T, and untreated, respectively). Embryos that hatched after warming did not differ in inner cell mass and trophectoderm cell counts (inner cell mass: 15.0 ± 1.9, 12.7 ± 3.0, and 13.0 ± 2.0; trophectoderm: 133.6 ± 8.4, 137.3 ± 12.8, and 138.4 ± 8.6 for HHP, T, and untreated groups, respectively; P > 0.05). Complementary studies are needed to analyze the effects of a sublethal stress in bovine oocytes on the subsequent embryo production and quality. Species-specific mechanisms could underlie the differences in results obtained in bovine and porcine. RTA2011-00090 (FEDER-INIA). Muñoz, Trigal, and Correia are sponsored by RYC08-03454, Cajastur, and FPU2009-5265, respectively.


1998 ◽  
Vol 13 (5) ◽  
pp. 1325-1330 ◽  
Author(s):  
A. M. Wetzels ◽  
B. A. Bastiaans ◽  
J. C. Hendriks ◽  
H. J. Goverde ◽  
A. P. Punt-van der Zalm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document