The composition of human preimplantation embryo culture media and their stability during storage and culture

2019 ◽  
Vol 34 (8) ◽  
pp. 1450-1461 ◽  
Author(s):  
M Tarahomi ◽  
F M Vaz ◽  
J P van Straalen ◽  
F A P Schrauwen ◽  
M van Wely ◽  
...  

Abstract STUDY QUESTION What is the composition and stability during storage and culture of fifteen commercially available human preimplantation embryo culture media? SUMMARY ANSWER No two culture media had the same composition, and both storage and culture had an effect on the concentrations of multiple components. WHAT IS KNOWN ALREADY The choice of embryo culture medium not only affects the success rate of an IVF treatment, but also affects the health of the future child. Exact formulations of embryo culture media are often not disclosed by manufacturers. It is unknown whether the composition of these media changes during storage or culture in the IVF laboratory. Without details on the exact concentrations, it is not possible to determine which components might be responsible for the differences in IVF success rates and health of the resulting children. STUDY DESIGN, SIZE, DURATION Between October 2014 and October 2015, all complete human preimplantation embryo culture media, i.e. ready to use for IVF, that were commercially available at that time, were included (n = 15). Osmolality and the concentration of thirty seven components including basic elements, metabolites, immunoglobulins, albumin, proteins and 21 amino acids were tested immediately upon arrival into the IVF laboratory, after three days of culture without embryos (sham culture) starting from the day of arrival, just before the expiry date, and after three days of sham culture just before the expiry date. PARTICIPANTS/MATERIALS, SETTING, METHODS Ions, glucose, immunoglobulins, albumin and the total amount of proteins were quantified using a combination of ion selective electrodes and photometric analysis modules, and lactate, pyruvate and 21 amino acids were analysed by ultra performance liquid chromatography mass spectrometry. Osmolality was analysed by an advanced micro-osmometer. Statistical analysis was done using multivariate general linear models. MAIN RESULTS AND THE ROLE OF CHANCE The composition varied between media, no two media had the same concentration of components. Storage led to significant changes in 17 of the 37 analyzed components (magnesium, chloride, phosphate, albumin, total amount of proteins, tyrosine, tryptophan, alanine, methionine, glycine, leucine, glutamine, asparagine, arginine, serine, proline, and threonine). Storage affected the osmolality in 3 of the 15 media, but for all media combined this effect was not significant (p = 0.08). Sham culture of the analyzed media had a significant effect on the concentrations of 13 of the 37 analyzed components (calcium, phosphate, albumin, total amount of proteins, tyrosine, alanine, methionine, glycine, leucine, asparagine, arginine, proline, and histidine). Sham culture significantly affected the osmolality of the analysed culture media. Two media contained 50% D-lactate, which a toxic dead-end metabolite. In a secondary analysis we detected human liver enzymes in more than half of the complete culture media. LIMITATIONS, REASONS FOR CAUTION The analyzed culture media could contain components that are not among the 37 components that were analyzed in this study. The clinical relevance of the varying concentrations is yet to be determined. WIDER IMPLICATIONS OF THE FINDINGS The presence of D-lactate could be avoided and the finding of human liver enzymes was surprising. The wide variation between culture media shows that the optimal composition is still unknown. This warrants further research as the importance of embryo culture media on the efficacy and safety in IVF is evident. Companies are urged to fully disclose the composition of their culture media, and provide clinical evidence supporting the composition or future changes thereof. STUDY FUNDING/COMPETING INTEREST(S) None.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
G Dionne ◽  
A J Watson ◽  
D H Betts ◽  
B A Rafea

Abstract Study question Our objective is determining whether supplementing embryo culture media with palmitic acid and/or oleic acid impacts Nrf2/Keap1 antioxidant response pathways during preimplantation mouse embryo development. Summary answer Supplementation of embryo culture media with palmitic acid increases cellular Nrf2 levels per embryo after 48-hour culture, while oleic acid reverses this effect. What is known already Obese women experience higher incidence of infertility than women with healthy BMIs. The obese reproductive tract environment supporting preimplantation embryo development is likely to include enhanced free fatty acid (FFA) levels and increased accumulation of reactive oxygen species. Exposure to palmitic acid (PA) in vitro significantly impairs mouse embryo development while increasing ER stress mRNAs. Oleic acid (OA) reverses these effects. To further define effects of FFA exposure, we are characterizing the influence of FFAs on the Nrf2–Keap1 pathway and its downstream antioxidant defense systems. We hypothesize that PA treatment induces Nrf2-Keap1 activity, while OA treatment alleviates pathway activity. Study design, size, duration Female CD–1 mice (4–6 weeks) were super-ovulated via intraperitoneal injections of PMSG, followed 48 hours later by hCG. Female mice were mated with male CD–1 mice (6–8 months) overnight. Females were euthanized using CO2 and two-cell embryos were collected by flushing oviducts. Two-cell embryos were placed into KSOMaa-based treatment groups: 1) BSA (control); 2) 100µM PA; 3) 100µM OA; 4) 100µM PA+OA, and cultured for 48 hours (37 °C; 5% O2, 5% CO2, 90% N2). Participants/materials, setting, methods After 48-hour embryo culture, developmental stages of all mouse embryos were recorded. Immunofluorescence analysis of Nrf2 and Keap1 localization was performed for embryo treatments (BSA, 100µM PA, 100µM OA & 100µM PA+OA) using rabbit polyclonal anti-Nrf2 antibody, with Rhodamine-Phalloidin and DAPI staining. Embryos were imaged using confocal microscopy and Nrf2-positive cells were counted using ImageJ. Nrf2 and Keap1 mRNA abundances were assessed after culture in each treatment condition using RT-qPCR and the delta-delta Ct method. Main results and the role of chance Inclusion of 100µM PA in embryo culture significantly decreased blastocyst development frequency from 70.06±16.38% in the BSA (control) group to 11.61±8.19% in the PA-treated group (p < 0.0001). Embryo culture with 100µM OA and 100µM PA+OA co-treatment did not significantly impair blastocyst development (OA: 61.59±8.07%, p = 0.4053; PA+OA: 63.53±7.63%, p = 0.6204). Embryo culture with PA treatment significantly increased the mean percentage of Nrf2-positive cells to 56.83±30.49% compared with 21.22±15.63% in the control group (p < 0.0001). Conversely, 100µM OA and 100µM PA+OA treatments did not significantly affect Nrf2-positive cell frequencies compared with the control group (OA: 33.28±21.83%, p = 0.1825; PA+OA: 34.84±12.66%, p = 0.0691). Immunofluorescence results show that treating embryos with 100µM PA for 48 hours results in increased levels of cellular Nrf2, while combining 100µM PA with 100µM OA reversed these effects. Preliminary qPCR analysis showed no significant differences in Nrf2 or Keap1 relative transcript abundance between any embryo treatment groups. Nrf2 and Keap1 mRNA levels were both higher after embryo culture with 100µM OA than all other culture groups (p = 0.6268; p = 0.3201). Notably, Keap1 relative transcript levels dropped to undetectable levels after culture with 100µM PA, which suggests an increase in Nrf2 activation.Limitations, reasons for caution: While immunofluorescence localization of Nrf2/Keap1 provides insight into how the proteins behave during preimplantation embryo development, confocal images cannot determine protein-protein interactions or activity levels. Similarly, transcript information from RT-qPCR analysis only provides information about Nrf2 and Keap1 at the transcript level. Nrf2 activity will be assessed via downstream targets. Wider implications of the findings: The Nrf2–Keap1 pathway coordinates numerous cellular defence mechanisms, and is implicated in various diseases, including cancer. Establishing an impact of free fatty acid exposure on Nrf2–Keap1 during preimplantation embryo development will provide valuable information regarding the effects of maternal obesity on outcomes for embryos produced from these patients. Trial registration number Not applicable


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Catherine M Castillo ◽  
Joyce Harper ◽  
Stephen A Roberts ◽  
Helen C O’Neill ◽  
Edward D Johnstone ◽  
...  

Abstract STUDY QUESTION Are selected embryo culture conditions namely media, oxygen level, and incubator type, associated with IVF live birth rate (LBR) and the health of singleton offspring at birth? SUMMARY ANSWER There were statistically significant differences in LBR between the eight culture media systems analysed; however, none of the embryo culture factors showed statistically significant associations with birth weight (BW) in multivariable regression analyses. WHAT IS KNOWN ALREADY In clinical ART culture media is the initial environment provided for the growth of human embryos. Pre-implantation development is a critical period of developmental plasticity, which could have long-lasting effects on offspring growth and health. Although some studies have shown an impact of culture medium type on BW, the interaction between culture medium type and associated culture conditions on both treatment success rates (LBR) and offspring BW is largely unexplored. This study aimed to examine these factors in a large multicentre national survey capturing the range of clinical practice. STUDY DESIGN, SIZE, DURATION In this cross-sectional study, data from a survey circulated to all UK IVF clinics requesting information regarding culture medium type, incubator type, and oxygen level used in ART between January 2011 and December 2013 were merged with routinely recorded treatment and outcome data held in the Human Fertilisation and Embryology Authority Register up to the end of 2014. PARTICIPANTS/MATERIALS, SETTING, METHODS Forty-six (62%) UK clinics responded to the survey. A total of 75 287 fresh IVF/ICSI cycles were captured, including 18 693 singleton live births. IVF success (live birth, singleton or multiple; LB), singleton gestation and singleton gestation-adjusted BW were analysed using logistic and linear regression models adjusting for patient/treatment characteristics and clinic-specific effects. MAIN RESULTS AND THE ROLE OF CHANCE Culture medium type was shown to have some impact on LBR (multivariable logistic regression, (MRL); post-regression Wald test, P < 0.001), but not on BW (MLR; post-regression Wald test, P = 0.215). However, blastocyst culture had the largest observed effect on odds of LBR (odds ratio (OR) = 1.35, CI: 1.29–1.42), increased the risk of pre-term birth even when controlling for oxygen tension (MLR; OR = 1.42, CI: 1.23–1.63), and gestation-adjusted BW (MLR, β = 38.97 g, CI: 19.42–58.53 g) when compared to cleavage-stage embryo culture. We noted a very strong effect of clinic site on both LBR and BW, thus confounding between treatment practices and clinic site may have masked the effect of culture conditions. LIMITATIONS, REASONS FOR CAUTION Larger datasets with more inter-centre variation are also needed, with key embryo culture variables comprehensively recorded in national treatment registries. WIDER IMPLICATIONS OF THE FINDINGS This study is the largest investigation of laboratory environmental effects in IVF on both LBR and singleton BW. Our findings largely agree with the literature, which has failed to show a consistent advantage of one culture media type over another. However, we noted some association of LBR with medium type, and the duration of embryo exposure to laboratory conditions (blastocyst culture) was associated with both LBR and singleton health at birth. Because of the strong effect of clinic site noted, further randomized controlled trials are needed in order to reliably determine the effect of embryo culture on IVF success rates and the growth and health of subsequent offspring. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the EU FP7 project grant EpiHealthNet (FP7-PEOPLE-2012-ITN -317 146). The authors have no competing interests to declare.


2018 ◽  
Vol 36 (03/04) ◽  
pp. 211-220 ◽  
Author(s):  
Sneha Mani ◽  
Monica Mainigi

AbstractAssisted reproductive technologies (ARTs) lead to an increased risk for pregnancy complications, congenital abnormalities, and specific imprinting disorders. Epigenetic dysfunction is thought to be one common mechanism which may be affecting these outcomes. The timing of multiple ART interventions overlaps with developmental time periods that are particularly vulnerable to epigenetic change. In vitro embryo culture is known to impact blastocyst development, in vitro fertilization (IVF) success rates, as well as neonatal outcomes. Embryo culture, in contrast to other procedures involved in ART, is obligatory, and has the highest potential for causing alterations in epigenetic reprograming. In this review, we summarize progress that has been made in exploring the effects of embryo culture, culture media, and oxygen tension on epigenetic regulation in the developing embryo. In humans, it is difficult to isolate the role of embryo culture on epigenetic perturbations. Therefore, additional well-controlled animal studies isolating individual exposures are necessary to minimize the epigenetic effects of modifiable factors utilized during ART. Findings from these studies will likely not only improve IVF success rates but also reduce the risk of adverse perinatal outcomes.


Zygote ◽  
2010 ◽  
Vol 19 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Pierre Guérin ◽  
Yves Ménézo

SummaryThe culture of early preimplantation stage embryo is still delicate and the metabolic pathways of embryos are not completely understood. Embryo needs are evolutionary during the preimplantation development, consequently it is difficult to meet embryo needs in vitro. Culture conditions have to respect several physical and chemical equilibria: such as redox potential, pH, osmotic pressure, metabolic flux of energetic compounds, endogenous pools of amino acids and transcripts, etc. Embryo culture media are generally supplemented with amino acids, glucose, other energetic metabolites and antioxidant compounds, vitamin, and growth factors etc. Furthermore autocrine and paracrine regulation of embryo development probably exist. In fact embryo culture conditions have to be as non-toxic as possible. Various types of co-culture systems have been devised to overcome these problems. Complex interrelations exist between embryos and co-cultured cells. The beneficial effects of co-cultured cells may be due to continuous modifications of the culture medium, i.e. the elimination of toxic compounds and/or the supply of embryotrophic factors.


2018 ◽  
Vol 37 (4) ◽  
pp. 409-414 ◽  
Author(s):  
Majid Tarahomi ◽  
Annemieke A de Melker ◽  
Madelon van Wely ◽  
Geert Hamer ◽  
Sjoerd Repping ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document