scholarly journals A Novel Pharmacological Approach to Enhance the Integrity and Accelerate Restitution of the Intestinal Epithelial Barrier

2020 ◽  
Vol 26 (9) ◽  
pp. 1340-1352
Author(s):  
Xuelei Cao ◽  
Lei Sun ◽  
Susana Lechuga ◽  
Nayden G Naydenov ◽  
Alex Feygin ◽  
...  

Abstract Background Disruption of the gut barrier is an essential mechanism of inflammatory bowel diseases (IBDs) contributing to the development of mucosal inflammation. A hallmark of barrier disruption is the disassembly of epithelial adherens junctions (AJs) driven by decreased expression of a major AJ protein, E-cadherin. A group of isoxazole compounds, such as E-cadherin-upregulator (ECU) and ML327, were previously shown to stimulate E-cadherin expression in poorly differentiated human cancer cells. This study was designed to examine whether these isoxazole compounds can enhance and protect model intestinal epithelial barriers in vitro. Methods The study was conducted using T84, SK-CO15, and HT-29 human colonic epithelial cell monolayers. Disruption of the epithelial barrier was induced by pro-inflammatory cytokines, tumor necrosis factor-α, and interferon-γ. Barrier integrity and epithelial junction assembly was examined using different permeability assays, immunofluorescence labeling, and confocal microscopy. Epithelial restitution was analyzed using a scratch wound healing assay. Results E-cadherin-upregulator and ML327 treatment of intestinal epithelial cell monolayers resulted in several barrier-protective effects, including reduced steady-state epithelial permeability, inhibition of cytokine-induced barrier disruption and junction disassembly, and acceleration of epithelial wound healing. Surprisingly, these effects were not due to upregulation of E-cadherin expression but were mediated by multiple mechanisms including inhibition of junction protein endocytosis, attenuation of cytokine-induced apoptosis, and activation of promigratory Src and AKT signaling. Conclusions Our data highlight ECU and ML327 as promising compounds for developing new therapeutic strategies to protect the integrity and accelerate the restitution of the intestinal epithelial barrier in IBD and other inflammatory disorders.

2016 ◽  
Vol 150 (4) ◽  
pp. S311
Author(s):  
Chloé Terciolo ◽  
Aurélie Dobric ◽  
Carole Siret ◽  
Mehdi Ouaissi ◽  
Françoise Silvy ◽  
...  

2008 ◽  
Vol 134 (4) ◽  
pp. A-570
Author(s):  
Laurianne Van Landeghem ◽  
Pascal Derkinderen ◽  
Philippe Aubert ◽  
Hervé Enslen ◽  
Isabelle Guisle-Marsollier ◽  
...  

2016 ◽  
Vol 310 (11) ◽  
pp. G962-G972 ◽  
Author(s):  
Jin-Hang Gao ◽  
Shi-Lei Wen ◽  
Huan Tong ◽  
Chun-Hui Wang ◽  
Wen-Juan Yang ◽  
...  

Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis.


Sign in / Sign up

Export Citation Format

Share Document