fusarium mycotoxins
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 75)

H-INDEX

47
(FIVE YEARS 8)

2022 ◽  
Vol 369 ◽  
pp. 130926
Author(s):  
Nela Prusova ◽  
Zbynek Dzuman ◽  
Lukas Jelinek ◽  
Marcel Karabin ◽  
Jana Hajslova ◽  
...  
Keyword(s):  

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 670
Author(s):  
M. Nazrul Islam ◽  
Mourita Tabassum ◽  
Mitali Banik ◽  
Fouad Daayf ◽  
W. G. Dilantha Fernando ◽  
...  

Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016–2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2025
Author(s):  
Gabriele Rocchetti ◽  
Francesca Ghilardelli ◽  
Francesco Masoero ◽  
Antonio Gallo

In this work, a retrospective screening based on ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) based on Orbitrap-Q-Exactive Focus™ was used to check the occurrence of regulated and emerging mycotoxins in bulk milk samples. Milk samples were collected from dairy farms in which corn silage was the main ingredient of the feeding system. The 45 bulk milk samples were previously analyzed for a detailed untargeted metabolomic profiling and classified into five clusters according to the corn silage contamination profile, namely: (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Multivariate statistics based on both unsupervised and supervised analyses were used to evaluate the significant fold-change variations of the main groups of mycotoxins detected when comparing milk samples from clusters 3, 4, and 5 (high contamination levels of the corn silages) with cluster 1 and 2 (low contamination levels of the corn silages). Overall, 14 compounds showed a significant prediction ability, with antibiotic Y (VIP score = 2.579), bikaverin (VIP score = 1.975) and fumonisin B2 (VIP score = 1.846) being the best markers. The k-means clustering combined with supervised statistics showed two discriminant groups of milk samples, thus revealing a hierarchically higher impact of the whole feeding system (rather than the only corn silages) together with other factors of variability on the final mycotoxin contamination profile. Among the discriminant metabolites we found some Fusarium mycotoxins, together with the tetrapeptide tentoxin (an Alternaria toxin), the α-zearalenol (a catabolite of zearalenone), mycophenolic acid and apicidin. These preliminary findings provide new insights into the potential role of UHPLC-HRMS to evaluate the contamination profile and the safety of raw milk to produce hard cheese.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2534
Author(s):  
Tamara Dolenšek ◽  
Tanja Švara ◽  
Tanja Knific ◽  
Mitja Gombač ◽  
Boštjan Luzar ◽  
...  

Mycotoxins are common fungal secondary metabolites in both animal feed and human food, representing widespread toxic contaminants that cause various adverse effects. Co-contamination with different mycotoxins is frequent; therefore, this study focused on feed contaminated with Fusarium mycotoxins, namely, deoxynivalenol (5.08 mg/kg), zearalenone (0.09 mg/kg), and fusaric acid (21.6 mg/kg). Their effects on the liver of gilts and their piglets were chosen as the research subject as pigs are one of the most sensitive animal species that are also physiologically very similar to humans. The gilts were fed the experimental diet for 54 ± 1 day, starting late in their pregnancy and continuing until roughly a week after weaning of their piglets. Livers of gilts and their piglets were assessed for different histopathological changes, apoptosis, and proliferation activity of hepatocytes. On histopathology, gilts fed the experimental diet had a statistically significant increase in hepatocellular necrosis and apoptosis (p = 0.0318) as well as sinusoidal leukocytosis with inflammatory infiltrates of hepatic lobules (p = 0.0004). The amount of interlobular connective tissue in the liver of experimental gilts was also significantly decreased (p = 0.0232), implying a disruption in the formation of fibrous connective tissue. Apoptosis of hepatocytes and of cells in hepatic sinusoids, further assessed by the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, showed a statistically significant increase (p = 0.0224 and p = 0.0007, respectively). No differences were observed in piglet livers. These results indicated that Fusarium mycotoxins elicited increased apoptosis, necrosis, and inflammation in the liver of gilts, but caused no effects on the liver of piglets at these concentrations.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1313
Author(s):  
Szabina Kulcsár ◽  
Benjámin Kövesi ◽  
Krisztián Balogh ◽  
Erika Zándoki ◽  
Zsolt Ancsin ◽  
...  

It has been proven by several studies that Fusarium mycotoxins induce oxidative stress in animals, consequently inducing lipid peroxidation, which the glutathione system can neutralize. A short-term (3-day) in vivo feeding trial was performed with laying hens using a double dose of the EU recommendation for mycotoxin contamination (T-2 toxin 0.5 mg/kg feed; deoxynivalenol (DON) 10 mg/kg feed; fumonisin B1 (FB1) 40 mg/kg feed). Some lipid peroxidation and glutathione redox system parameters and gene expression levels were measured in the liver. The results show that FB1 significantly decreased the reduced glutathione (GSH) content and the activity of glutathione peroxidase (GPx) compared to the control and the two other mycotoxin-treated groups on day 3. Lipid peroxidation was affected by all three mycotoxins. Significantly lower values were observed in the case of conjugated dienes for all of the three mycotoxins and malondialdehyde concentration as an effect of DON on day 3. T-2 toxin and DON upregulated the expression of the GPX4 gene. The results show that Fusarium mycotoxins had different effects at the end of the trial. The FB1 exposure caused a decrease in the glutathione redox markers, while DON decreased the formation of malondialdehyde. The results suggest that the Fusarium mycotoxins investigated individually differently activated the antioxidant defense and caused low-level oxidative stress at the dose applied.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 475
Author(s):  
Gabriele Rocchetti ◽  
Francesca Ghilardelli ◽  
Paolo Bonini ◽  
Luigi Lucini ◽  
Francesco Masoero ◽  
...  

In this study, an untargeted metabolomics approach based on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) was used for investigating changes in chemical profiles of cow milk considering diets based on mycotoxins-contaminated corn silages. For this purpose, 45 milk samples were classified into five clusters according to the corn silage contamination profile, namely (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites, and subsequently analyzed by UHPLC-HRMS followed by a multivariate statistical analysis (both unsupervised and supervised statistical approaches). Overall, the milk metabolomic profile highlighted potential correlations between the quality of contaminated corn silages (as part of the total mixed ration) and milk composition. Metabolomics allowed to identify 628 significant milk metabolites as affected by the five levels of corn silage contamination considered, with amino acids and peptides showing the highest metabolite set enrichment (134 compounds). Additionally, 78 metabolites were selected as the best discriminant of the prediction model built, possessing a variable importance in projection score >1.2. The average Log Fold-Change variations of the discriminant metabolites provided evidence that sphingolipids, together with purine and pyrimidine-derived metabolites were the most affected chemical classes. Also, metabolomics revealed a significant accumulation of oxidized glutathione in milk samples belonging to the silage cluster contaminated by emerging Aspergillus toxins, likely involved in the oxidative imbalance. These preliminary findings provide new insights into the potential role of milk metabolomics to provide chemical indicators of mycotoxins-contaminated corn silage feeding systems.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 409
Author(s):  
Karolina Gromadzka ◽  
Jakub Pankiewicz ◽  
Monika Beszterda ◽  
Magdalena Paczkowska ◽  
Beata Nowakowska ◽  
...  

Mycotoxin exposure assessments through biomonitoring studies, based on the analysis of amniotic fluid, provides useful information about potential exposure of mothers and fetuses to ubiquitous toxic metabolites that are routinely found in food and the environment. In this study, amniotic fluid samples (n = 86) were collected via abdominal amniocentesis at 15–22 weeks of gestation from pregnant women with a high risk of chromosomal anomalies or genetic fetal defects detected during 1st trimester prenatal screening. These samples were analyzed for the presence of the most typical Aspergillus, Penicillium and Fusarium mycotoxins, with a focus on aflatoxins, ochratoxins and trichothecenes, using the LC-FLD/DAD method. The results showed that the toxin was present in over 75% of all the tested samples and in 73% of amniotic fluid samples from fetuses with genetic defects. The most frequently identified toxins were nivalenol (33.7%) ranging from <LOQ to 4037.6 ng/mL, and aflatoxins (31.4%), including aflatoxin G1, ranging from <LOQ to 0.4 ng/mL. Ochratoxin A and deoxynivalenol were identified in 26.7% and 27.9% of samples, respectively. Bearing in mind the above, the detection of mycotoxin levels in amniotic fluid is useful for the estimation of overall risk characterization with an attempt to link the occurrence of fetal abnormalities with exposure to mycotoxins in utero.


2021 ◽  
pp. 1-12
Author(s):  
A. Mesfin ◽  
K. Tesfamariam ◽  
T. Belachew ◽  
S. De Saeger ◽  
C. Lachat ◽  
...  

Multi-mycotoxin exposure data are missing to guide risk assessment and legislation in Ethiopia. This study therefore aimed to determine mycotoxin contamination levels in maize samples from 176 randomly selected household storages in three agro ecological zones of South (Sidama zone) and West (Jimma zone) Ethiopia, and to examine the post-harvest practices and household processing. Liquid chromatography coupled to tandem mass spectrometry was used to quantify 23 mycotoxins. The majority of the households regularly consumed maize (more than once per day). More (77%) samples in Sidama were contaminated with Fusarium mycotoxins deoxynivalenol than in Jimma (29%) (P<0.001); Similar distributions of fumonisin B1 (19%), fumonisin B2 (19%) and fumonisin B3 (12%, Sidama vs 13%, Jimma) contamination were observed (P>0.05). In Sidama, only one sample was contaminated with the Aspergillus mycotoxin aflatoxin B2 and another sample with aflatoxin B1. From all samples, 40% were contaminated with 3-5 types of Fusarium mycotoxins and only 4% of the samples were contaminated with 6-8 types of mycotoxins. After the harvested maize was dried on the field, the majority of respondents in Jimma reported that they removed the maize within one day, which was less practiced in Sidama. The majority of households in Sidama, and some in Jimma, reported that they dried maize before storage, mainly using the sun. Close to two third of the study participants in the two zones reported that they applied the chemical dichloro-diphenyl-trichloroethane (DDT) during maize storage. All households in both zones reported that they sorted visible mouldy maize grains before preparation of maize flour while most of them kept the mouldy maize for animal feed. Protective strategies of Fusarium mycotoxin contamination, with special focus on deoxynivalenol and zearalenone, should be well promoted in the study areas as they are possible human and animal health threats.


2021 ◽  
Author(s):  
A. Gallo ◽  
F. Ghilardelli ◽  
B. Doupovec ◽  
J. Faas ◽  
D. Schatzmayr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document