Metachronal Coordination of Multiple Appendages for Swimming and Pumping

Author(s):  
Margaret Byron ◽  
Arvind Santhanakrishnan ◽  
David Murphy

Synopsis As a strategy for creating fluid flow, metachronal motion is widespread across sizes and species, including a broad array of morphologies, length scales, and coordination patterns. Because of this great diversity, it has not generally been viewed holistically: The study of metachrony for swimming and pumping has historically been taxonomically siloed, in spite of many commonalities between seemingly disparate organisms. The goal of the present symposium was to bring together individuals from different backgrounds, all of whom have made substantial individual contributions to our understanding of the fluid dynamics of metachronal motion. Because these problems share a common physical–mathematical basis, intentionally connecting this community is likely to yield future collaborations and significant scientific discovery. Here, we briefly introduce the concept of metachronal motion, present the benefits of creating a research network based on the common aspects of metachrony across biological systems, and outline the contributions to the symposium.

Author(s):  
Zainab Yousif Shnain ◽  
Jamal M. Ali ◽  
Khalid A. Sukkar ◽  
May Ali Alsaffar ◽  
Mohammad F. Abid

Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 47 ◽  
Author(s):  
Jacquelyn Nagel ◽  
Linda Schmidt ◽  
Werner Born

Biological systems have evolved over billions of years and cope with changing conditions through the adaptation of morphology, physiology, or behavior. Learning from these adaptations can inspire engineering innovation. Several bio-inspired design tools and methods prescribe the use of analogies, but lack details for the identification and application of promising analogies. Further, inexperienced designers tend to have a more difficult time recognizing or creating analogies from biological systems. This paper reviews biomimicry literature to establish analogy categories as a tool for knowledge transfer between biology and engineering to aid bio-inspired design that addresses the common issues. Two studies were performed with the analogy categories. A study of commercialized products verifies the set of categories, while a controlled design study demonstrates the utility of the categories. The results of both studies offer valuable information and insights into the complexity of analogical reasoning and transfer, as well as what leads to biological inspiration versus imitation. The influence on bio-inspired design pedagogy is also discussed. The breadth of the analogy categories is sufficient to capture the knowledge transferred from biology to engineering for bio-inspired design. The analogy categories are a design method independent tool and are applicable for professional product design, research, and teaching purposes.


Author(s):  
Dwi Listriana Kusumastuti

Water, oil and gas inside the earth are stored in the pores of the reservoir rock. In the world of petroleum industry, calculation of volume of the oil that can be recovered from the reservoir is something important to do. This calculation involves the calculation of the velocity of fluid flow by utilizing the principles and formulas provided by the Fluid Dynamics. The formula is usually applied to the fluid flow passing through a well defined control volume, for example: cylinder, curved pipe, straight pipes with different diameters at the input and output, and so forth. However, because of reservoir rock, as the fluid flow medium, has a wide variety of possible forms of the control volumes, hence, calculation of the velocity of the fluid flow is becoming difficult as it would involve calculations of fluid flow velocity for each control volume. This difficulties is mainly caused by the fact that these control volumes, that existed in the rock, cannot be well defined. This paper will describe a method for calculating this fluid flow velocity of the control volume, which consists of a combination of laboratory measurements and the use of some theories in the Fluid Dynamics. This method has been proofed can be used for calculating fluid flow velocity as well as oil recovery in reservoir rocks, with fairly good accuration.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 14 ◽  
Author(s):  
Cole Jeznach ◽  
Sarah D. Olson

Micro-swimmers such as spermatozoa are able to efficiently navigate through viscous fluids that contain a sparse network of fibers or other macromolecules. We utilize the Brinkman equation to capture the fluid dynamics of sparse and stationary obstacles that are represented via a single resistance parameter. The method of regularized Brinkmanlets is utilized to solve for the fluid flow and motion of the swimmer in 2-dimensions when assuming the flagellum (tail) propagates a curvature wave. Extending previous studies, we investigate the dynamics of swimming when varying the resistance parameter, head or cell body radius, and preferred beat form parameters. For a single swimmer, we determine that increased swimming speed occurs for a smaller cell body radius and smaller fluid resistance. Progression of swimmers exhibits complex dynamics when considering hydrodynamic interactions; attraction of two swimmers is a robust phenomenon for smaller beat amplitude of the tail and smaller fluid resistance. Wall attraction is also observed, with a longer time scale of wall attraction with a larger resistance parameter.


Sign in / Sign up

Export Citation Format

Share Document