scholarly journals Mining seafloor massive sulphides and biodiversity: what is at risk?

2010 ◽  
Vol 68 (2) ◽  
pp. 341-348 ◽  
Author(s):  
Cindy Lee Van Dover

Abstract Van Dover, C. L. 2011. Mining seafloor massive sulphides and biodiversity: what is at risk? – ICES Journal of Marine Science, 68: 341–348. Scientific exploration of the deep sea in the late 1970s led to the discovery of seafloor massive sulphides at hydrothermal vents. More recently, sulphide deposits containing high grades of ore have been discovered in the southwest Pacific. In addition to metal-rich ores, hydrothermal vents host ecosystems based on microbial chemoautotrophic primary production, with endemic invertebrate species adapted in special ways to the vent environment. Although there has been considerable effort to study the biology and ecology of vent systems in the decades since these systems were first discovered, there has been limited attention paid to conservation issues. Three priority recommendations for conservation science at hydrothermal vent settings are identified here: (i) determine the natural conservation units for key species with differing life histories; (ii) identify a set of first principles for the design of preservation reference areas and conservation areas; (iii) develop and test methods for effective mitigation and restoration to enhance the recovery of biodiversity in sulphide systems that may be subject to open-cut mining.

2018 ◽  
Vol 18 (3) ◽  
Author(s):  
André Luis Moura Botelho ◽  
Luiz Henrique Medeiros Borges ◽  
Brian McFarland

Abstract: The implementation of private areas focused on conservation of species and habitats, combined with REDD+ policies, has become an important ally for biodiversity conservation, expanding the conservation areas of the most varied habitats, covering key groups such as large mammals, which are extremely important for the maintenance of ecosystem services. In the upper region of the Purus River in Acre, Brazil, an inventory was carried out using camera-traps, of medium and large mammals community in a private REDD+ area, known as the Purus Project. A total of 19 species of mammals were recorded with an effort of 1859 trap-nigths, including rare, endangered and key species. It is estimated that the richness for the area is of 22 species. Endangered and rare species such as the tapir (Tapirus terrestris) and the short-eared dog (Atelocynus microtis) presented high rates of relative abundance compared to other Conservation Units (UCs). The richness of medium to large-sized mammals recorded in the Purus Project underscores the importance of REDD+ in private areas for the conservation of this group, given the challenges for inclusion and creation of new protected areas. REDD+ projects in privates' areas become an important component for conservation of species and the connection between public conservation units favoring the spread of species and populations between areas, and consequently the gene flow.


2019 ◽  
Author(s):  
Andrew Thaler ◽  
Diva Amon

When the RV Knorr set sail for the Galapagos Rift in 1977, the scientists aboard expected to find deep-sea hydrothermal vents. What they did not expect to find was life—abundant and unlike anything ever seen before. Submersible dives revealed not only deep-sea hydrothermal vents but entire ecosystem surrounding them, including the towering bright red tubeworms that would become icons of the deep sea. This discovery was so unexpected that the ship carried no biological preservatives. These first specimens were fixed in vodka from the scientists’ private reserves.Since that first discovery, deep-sea hydrothermal vents have been found throughout the oceans. As more regions are explored, newly discovered vent fields present the potential for entirely species and ecosystems. Increasingly, however, it is not scientific discovery, but the financial value of vent fields, and the ores they contain, that is driving exploration in the deep sea. Over the last five decades, a new industry has emerged to explore the potential of mining Seafloor Massive Sulphides (deep-sea hydrothermal vents that contain high concentrations of rare and precious metals). Multiple enterprises are developing mining prospects that include both active and inactive deep-sea hydrothermal vent fields. In order to understand the impacts of exploitation at deep-sea hydrothermal vents, scientists and miners must establish environmental baselines. Biodiversity is frequently used as a proxy for resilience and as a metric for assessing biological baselines but, since research effort is not distributed equally across the oceans, biodiversity estimates in the deep sea are rarely comprehensive. Studies have predominantly focused on a few key biogeographic provinces, while other regions have only been sampled sparingly. Managers, regulators, and mining companies are working from incomplete data, with inferences about the consequences, as well as mitigation and remediation practices, often drawn from studies of few vent ecosystems that are often different from those in which the impacts are expected to occur. To better assess our current understanding of deep-sea hydrothermal vent biodiversity, we undertook a quantitative survey of the last 40 years of vent research. A stark north/south divide was detected, demonstrating that while research was disproportionately focused in the Northern Hemisphere, mining prospects were overwhelmingly positioned in the Southern Hemisphere. In addition, we provided a ranked assessment of biodiversity in eight major biogeographic provinces, identified knowledge gaps in the available deep-sea hydrothermal vent exploration literature, and assessed sampling completeness to provide further guidance to regulators, managers, and contractors as they develop comprehensive environmental baseline assessments.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5979 ◽  
Author(s):  
Alex D. Washburne ◽  
Daniel E. Crowley ◽  
Daniel J. Becker ◽  
Kevin J. Olival ◽  
Matthew Taylor ◽  
...  

Predicting and simplifying which pathogens may spill over from animals to humans is a major priority in infectious disease biology. Many efforts to determine which viruses are at risk of spillover use a subset of viral traits to find trait-based associations with spillover. We adapt a new method—phylofactorization—to identify not traits but lineages of viruses at risk of spilling over. Phylofactorization is used to partition the International Committee on Taxonomy of Viruses viral taxonomy based on non-human host range of viruses and whether there exists evidence the viruses have infected humans. We identify clades on a range of taxonomic levels with high or low propensities to spillover, thereby simplifying the classification of zoonotic potential of mammalian viruses. Phylofactorization by whether a virus is zoonotic yields many disjoint clades of viruses containing few to no representatives that have spilled over to humans. Phylofactorization by non-human host breadth yields several clades with significantly higher host breadth. We connect the phylogenetic factors above with life-histories of clades, revisit trait-based analyses, and illustrate how cladistic coarse-graining of zoonotic potential can refine trait-based analyses by illuminating clade-specific determinants of spillover risk.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 178 ◽  
Author(s):  
Víctor Enrique Cussac ◽  
María Eugenia Barrantes ◽  
Claudia Clementina Boy ◽  
Konrad Górski ◽  
Evelyn Habit ◽  
...  

South American galaxiids occupy both Patagonia and the ichthyogeographic Chilean Province, encompassing glacial Andean deep lakes, shallow plateau lakes, reservoirs, short Pacific rivers and long Atlantic rivers. The total fish fauna includes 29 species, comprising Neotropical fishes (siluriforms and characids), galaxiids, percichthyids, atherinopsids and mugilids, two lamprey species, and several exotic fishes (salmonids, Gambusia spp. and common carp). The family Galaxiidae shares a common ancestry with the Gondwanan temperate fish fauna, played a major role in the post-glacial colonization of Andean lakes and streams, and contributes key species to the food webs. Galaxiid species occupy an enormous latitudinal gradient, show a wide variety of life history patterns and are the southernmost native freshwater fishes of the world. Knowledge of South American galaxiids has improved notably, but new challenges arise due to climate change, biological invasions, damming, aquaculture and contamination. In this changing environment, the future of South American galaxiids should be carefully considered as a legacy of the old Gondwana and a unique attribute of the freshwaters of southern South America.


2019 ◽  
Vol 107 ◽  
pp. 903-925 ◽  
Author(s):  
Bramley J. Murton ◽  
Berit Lehrmann ◽  
Adeline M. Dutrieux ◽  
Sofia Martins ◽  
Alba Gil de la Iglesia ◽  
...  

2017 ◽  
Author(s):  
Ivan Paz-Vinas ◽  
Géraldine Loot ◽  
Virgilio Hermoso ◽  
Charlotte Veyssiere ◽  
Nicolas Poulet ◽  
...  

AbstractIntraspecific diversity informs the demographic and evolutionary histories of populations, and should be a main conservation target. Although approaches exist for identifying relevant biological conservation units, attempts to identify priority conservation areas for intraspecific diversity are scarce, especially within a multi-specific framework. We used neutral molecular data on six European freshwater fish species (Squalius cephalus, Phoxinus phoxinus, Barbatula barbatula, Gobio occitaniae, Leuciscus burdigalensis and Parachondrostoma toxostoma) sampled at the riverscape scale (i.e. the Garonne-Dordogne River basin, France) to determine hot- and cold-spots of genetic diversity, and to identify priority conservation areas using a systematic conservation planning approach. We demonstrate that systematic conservation planning is efficient for identifying priority areas representing a predefined part of the total genetic diversity of a whole landscape. With the exception of private allelic richness, classical genetic diversity indices (allelic richness, genetic uniqueness) were poor predictors for identifying priority areas. Moreover, we identified weak surrogacies among conservation solutions found for each species, implying that conservation solutions are highly species-specific. Nonetheless, we showed that priority areas identified using intraspecific genetic data from multiple species provide more effective conservation solutions than areas identified for single species or on the basis of traditional taxonomic criteria.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 182 ◽  
Author(s):  
Ivete Maquia ◽  
Silvia Catarino ◽  
Ana R. Pena ◽  
Denise R.A. Brito ◽  
Natasha. S. Ribeiro ◽  
...  

The southern African Miombo and Mopane ecoregions constitute a unique repository of plant diversity whose diversification and evolutionary history is still understudied. In this work, we assessed the diversity, distribution, and conservation status of Miombo and Mopane tree legumes within the Zambezian phytoregion. Data were retrieved from several plant and gene databases and phylogenetic analyses were performed based on genetic barcodes. Seventy-eight species (74 from Miombo and 23 from Mopane, 19 common to both ecoregions) have been scored. Species diversity was high within both ecoregions, but information about the actual conservation status is scarce and available only for ca. 15% of the species. Results of phylogenetic analyses were consistent with current legume classification but did not allow us to draw any conclusion regarding the evolutionary history of Miombo and Mopane tree legumes. Future studies are proposed to dissect the diversity and structure of key species in order to consolidate the network of conservation areas.


Sign in / Sign up

Export Citation Format

Share Document