scholarly journals The importance of length and age composition data in statistical age-structured models for marine species

2014 ◽  
Vol 72 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Kotaro Ono ◽  
Roberto Licandeo ◽  
Melissa L. Muradian ◽  
Curry J. Cunningham ◽  
Sean C. Anderson ◽  
...  

Abstract Management of marine resources depends on the assessment of stock status in relation to established reference points. However, many factors contribute to uncertainty in stock assessment outcomes, including data type and availability, life history, and exploitation history. A simulation–estimation framework was used to examine the level of bias and accuracy in assessment model estimates related to the quality and quantity of length and age composition data across three life-history types (cod-, flatfish-, and sardine-like species) and three fishing scenarios. All models were implemented in Stock Synthesis, a statistical age-structured stock assessment framework. In general, the value of age composition data in informing estimates of virgin recruitment (R0), relative spawning-stock biomass (SSB100/SSB0), and terminal year fishing mortality rate (F100), decreased as the coefficient of variation of the relationship between length and age became greater. For this reason, length data were more informative than age data for the cod and sardine life histories in this study, whereas both sources of information were important for the flatfish life history. Historical composition data were more important for short-lived, fast-growing species such as sardine. Infrequent survey sampling covering a longer period was more informative than frequent surveys covering a shorter period.

2010 ◽  
Vol 67 (6) ◽  
pp. 1185-1197 ◽  
Author(s):  
C. Fernández ◽  
S. Cerviño ◽  
N. Pérez ◽  
E. Jardim

Abstract Fernández, C., Cerviño, S., Pérez, N., and Jardim, E. 2010. Stock assessment and projections incorporating discard estimates in some years: an application to the hake stock in ICES Divisions VIIIc and IXa. – ICES Journal of Marine Science, 67: 1185–1197. A Bayesian age-structured stock assessment model is developed to take into account available information on discards and to handle gaps in the time-series of discard estimates. The model incorporates mortality attributable to discarding, and appropriate assumptions about how this mortality may change over time are made. The result is a stock assessment that accounts for information on discards while, at the same time, producing a complete time-series of discard estimates. The method is applied to the hake stock in ICES Divisions VIIIc and IXa, for which the available data indicate that some 60% of the individuals caught are discarded. The stock is fished by Spain and Portugal, and for each country, there are discard estimates for recent years only. Moreover, the years for which Portuguese estimates are available are only a subset of those with Spanish estimates. Two runs of the model are performed; one assuming zero discards and another incorporating discards. When discards are incorporated, estimated recruitment and fishing mortality for young (discarded) ages increase, resulting in lower values of the biological reference points Fmax and F0.1 and, generally, more optimistic future stock trajectories under F-reduction scenarios.


2014 ◽  
Vol 72 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Felipe Hurtado-Ferro ◽  
Cody S. Szuwalski ◽  
Juan L. Valero ◽  
Sean C. Anderson ◽  
Curry J. Cunningham ◽  
...  

Abstract Retrospective patterns are systematic changes in estimates of population size, or other assessment model-derived quantities, that occur as additional years of data are added to, or removed from, a stock assessment. These patterns are an insidious problem, and can lead to severe errors when providing management advice. Here, we use a simulation framework to show that temporal changes in selectivity, natural mortality, and growth can induce retrospective patterns in integrated, age-structured models. We explore the potential effects on retrospective patterns of catch history patterns, as well as model misspecification due to not accounting for time-varying biological parameters and selectivity. We show that non-zero values for Mohn’s ρ (a common measure for retrospective patterns) can be generated even where there is no model misspecification, but the magnitude of Mohn’s ρ tends to be lower when the model is not misspecified. The magnitude and sign of Mohn’s ρ differed among life histories, with different life histories reacting differently from each type of temporal change. The value of Mohn’s ρ is not related to either the sign or magnitude of bias in the estimate of terminal year biomass. We propose a rule of thumb for values of Mohn’s ρ which can be used to determine whether a stock assessment shows a retrospective pattern.


2011 ◽  
Vol 62 (8) ◽  
pp. 927 ◽  
Author(s):  
Chantell R. Wetzel ◽  
André E. Punt

Limited data are a common challenge posed to fisheries stock assessment. A simulation framework was applied to examine the impact of limited data and data type on the performance of a widely used catch-at-age stock-assessment method (Stock Synthesis). The estimation method provided negatively biased estimates of current spawning-stock biomass (SSB) relative to the unfished level (final depletion) when only recent survey indices were available. Estimation of quantities of management interest (unfished SSB, virgin recruitment, target fishing mortality and final depletion) improved substantially even when only minimal-length-composition data from the survey were available. However, the estimates of some quantities (final depletion and unfished SSB) remained biased (either positively or negatively) even in the scenarios with the most data (length compositions, age compositions and survey indices). The probability of overestimating yield at the target SSB relative to the true such yield was ~50%, a risk-neutral result, for all the scenarios that included length-composition data. Our results highlight the importance of length-composition data for the performance of an age-structured assessment model, and are encouraging for the assessment of data-limited stocks.


2009 ◽  
Vol 67 (1) ◽  
pp. 165-175 ◽  
Author(s):  
Elizabeth N. Brooks ◽  
Joseph E. Powers ◽  
Enric Cortés

AbstractBrooks, E. N., Powers, J. E., and Cortés, E. 2010. Analytical reference points for age-structured models: application to data-poor fisheries. – ICES Journal of Marine Science, 67: 165–175. Analytical solutions for biological reference points are derived in terms of maximum lifetime reproductive rate. This rate can be calculated directly from biological parameters of maturity, fecundity, and natural mortality or a distribution for this rate can be derived from appropriate metadata. Minimal data needs and assumptions for determining stock status are discussed. The derivations lead to a re-parameterization of the common stock–recruit relationships, Beverton–Holt and Ricker, in terms of spawning potential ratio. Often, parameters in stock–recruit relationships are restricted by tight prior distributions or are fixed based on a hypothesized level of stock resilience. Fixing those parameters is equivalent to specifying the biological reference points. An ability to directly calculate reference points from biological data, or a meta-analysis, without need of a full assessment model or fisheries data, makes the method an attractive option for data-poor fisheries. The derivations reveal an explicit link between the biological characteristics of a species and appropriate management. Predicted stock status for a suite of shark species was compared with recent stock assessment results, and the method successfully identified whether each stock was overfished.


2016 ◽  
Vol 73 (4) ◽  
pp. 1074-1090 ◽  
Author(s):  
Vania Henríquez ◽  
Roberto Licandeo ◽  
Luis A. Cubillos ◽  
Sean P. Cox

Abstract In age-structured fisheries stock assessments, ageing errors within age composition data can lead to biased mortality rate and year-class strength estimates. These errors may be further compounded where fishery-dependent age composition data are influenced by temporal changes in fishery selectivity and selectivity misspecification. In this study, we investigated how ageing error within age composition data interacts with time-varying fishery selectivity and selectivity misspecification to affect estimates derived from a statistical catch-at-age (SCA) model that used fishery-dependent data. We tested three key model parameters: average unfished recruitment (R0), spawning stock depletion (Dfinal), and fishing mortality in the terminal year (Fterminal). The Patagonian toothfish (Dissostichus eleginoides) fishery in southern Chile was used as a case study. Age composition data used to assess this fishery were split into two sets based on scale (1989–2006) and otolith (2007–2012) readings, where the scale readings show clear age-truncation effects. We used a simulation-estimation approach to examine the bias and precision of parameter estimates under various combinations of ageing error, selectivity type (asymptotic or dome-shaped), selectivity misspecification, and variation in selectivity over time. Generally, ageing error led to overly optimistic perceptions of current fishery status relative to historical reference points. Ageing error generated imprecise and positively biased estimates of R0 (range 10 to >200%), Dfinal (range −20 to >100%), and Fterminal (range −15 to >150%). The bias in Dfinal and R0 was more severe when selectivity was dome-shaped. Time-varying selectivity (both asymptotic and dome-shaped) increased the bias in Dfinal and Fterminal, but decreased the bias in R0. The effect of ageing error was more severe, or was masked, with selectivity misspecification. Correcting the ageing error inside the SCA reduced bias and improved precision of estimated parameters .


<i>Abstract</i>.—In the past decade, advances in our understanding of Paddlefish <i>Polyodon spathula</i> life history have provided additional insight into the information needed for sustainable harvest management of this long-lived species. Recovery of known-age fish in some stocks has enabled stock assessment biologists and managers to not only validate ages of individual fish, but to begin to validate the life histories. A framework for potentially recruited Paddlefish life history can be broken into five stages: 1) immature, 2) maturing, 3) somatic growth and reproduction, 4) prime reproduction, and 5) senescence to death. These stages involve measurable changes in growth in length and weight, gonadosomatic index (GSI), gonadal fat storage (GFBs), reproductive periodicity, natural mortality rates, and, in some cases, fish migrations. Stages 2–5 are typically initiated at younger ages for males than for females. Metabolic demands on Paddlefish result in them progressing through these life history stages more rapidly in southern stocks, inhabiting warmer waters, than in northern ones, inhabiting colder waters. Lifespans in most northerly stocks tend to be 2–3 times longer than for southern stocks. Natural mortality is also typically lower in northern stocks. These differences necessitate fundamentally different harvest management strategies among stocks. Regardless of the stock, however, in the prime reproduction stage, somatic growth is slow or negative, as energy is routed more strongly into reproduction, GSI is at a maximum, the period of gonadal recrudescence (i.e., spawning interval) is minimized, and GFBs are largely or completely depleted in females. Consistent with recommendations for other long-lived freshwater and marine species, harvest management strategies should be specifically planned to retain some older, prime spawning females in the population. In addition, sporadic or episodic recruitment in many stocks makes steady-state harvest models unrealistic, necessitating that harvest be appropriately matched to recruitment rates or events.


2009 ◽  
Vol 66 (3) ◽  
pp. 445-454 ◽  
Author(s):  
H. Moustahfid ◽  
J. S. Link ◽  
W. J. Overholtz ◽  
M. C. Tyrrell

AbstractMoustahfid, H., Link, J. S., Overholtz, W. J., and Tyrrell, M. C. 2009. The advantage of explicitly incorporating predation mortality into age-structured stock assessment models: an application for Atlantic mackerel. – ICES Journal of Marine Science, 66: 445–454. An age-structured assessment programme (ASAP) that explicitly incorporates predation mortality was applied to Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic. Predatory removals were modelled in the same manner as fishing mortality, with a comparable set of time-series, to produce estimates of predation mortality at age and for each year. Results from the analysis showed that incorporating predation into a mackerel stock assessment model notably altered model outputs. When excluding explicitly modelled rates of predation, the model underestimated the magnitude and uncertainty in spawning-stock biomass (SSB) and recruitment. Further, the rates of predation mortality varied across time and were higher for younger fish. Predation mortality was higher than fishing mortality for fish aged 1 year, approximately equal for 2-year-olds, and lower for older fish (3 years and older). Biological reference points for Atlantic mackerel differed considerably when predation mortality was included. For example, SSBMSY was more than twice as high in the model where predation was incorporated than in the fisheries-only model. Although there are several caveats to the predation model outputs, chief of which is that the estimates are conservative because some mackerel predators were excluded, the results demonstrate the feasibility of executing such an approach with an extant tool. The approach presented here ultimately has the advantage of detecting, and upon detection parsing out, the impact of predators relative to fisheries and has the potential to provide useful information to those interested in small pelagic fish and their associated fisheries.


2013 ◽  
Vol 70 (6) ◽  
pp. 930-940 ◽  
Author(s):  
Marc Mangel ◽  
Alec D. MacCall ◽  
Jon Brodziak ◽  
E.J. Dick ◽  
Robyn E. Forrest ◽  
...  

We provide a perspective on steepness, reference points for fishery management, and stock assessment. We first review published data and give new results showing that key reference points are fixed when steepness and other life history parameters are fixed in stock assessments using a Beverton–Holt stock–recruitment relationship. We use both production and age-structured models to explore these patterns. For the production model, we derive explicit relationships for steepness and life history parameters and then for steepness and major reference points. For the age-structured model, we are required to generally use numerical computation, and so we provide an example that complements the analytical results of the production model. We discuss what it means to set steepness equal to 1 and how to construct a prior for steepness. Ways out of the difficult situation raised by fixing steepness and life history parameters include not fixing them, using a more complicated stock–recruitment relationship, and being more explicit about the information content of the data and what that means for policy makers. We discuss the strengths and limitations of each approach.


2019 ◽  
Vol 76 (7) ◽  
pp. 2125-2139 ◽  
Author(s):  
Tanja Miethe ◽  
Yves Reecht ◽  
Helen Dobby

Abstract In the absence of abundance indices from scientific surveys or commercial sources, reliable length frequency data from sampled commercial catches can be used to provide an indirect assessment of fishing mortality. Length-based indicators are simple metrics which describe length frequency distributions. The length-based indicator Lmax5%, the mean length of the largest 5% of individuals in the catch, combined with appropriately selected reference points, can be used to evaluate the presence of very large individuals in the catch and hence determine exploitation level. Using analytical per-recruit models, we derive reference points consistent with a spawning potential ratio of 40%. The reference points depend on the life history parameters for natural mortality, maturity, and growth (M, Lmat, L∞, k, CVL∞). Using available simulation tools, we investigate the sensitivity of the reference points to errors in these parameters and explore the usefulness of particular reference points for management purposes for stocks with different life histories. The proposed reference points are robust to uncertainty in length at first capture, Lc, and take into account the maturation schedule of a species. For those stocks with high M/k ratios (&gt;1), Lmax5%, combined with the appropriate reference point, can be used to provide a data-limited stock assessment.


2020 ◽  
Vol 7 ◽  
Author(s):  
David Chagaris ◽  
Katie Drew ◽  
Amy Schueller ◽  
Matt Cieri ◽  
Joana Brito ◽  
...  

Atlantic menhaden (Brevoortia tyrannus) are an important forage fish for many predators, and they also support the largest commercial fishery by weight on the U.S. East Coast. Menhaden management has been working toward ecological reference points (ERPs) that account for menhaden’s role in the ecosystem. The goal of this work was to develop menhaden ERPs using ecosystem models. An existing Ecopath with Ecosim model of the Northwest Atlantic Continental Shelf (NWACS) was reduced in complexity from 61 to 17 species/functional groups. The new NWACS model of intermediate complexity for ecosystems (NWACS-MICE) serves to link the dynamics of menhaden with key managed predators. Striped bass (Morone saxatilis) were determined to be most sensitive to menhaden harvest and therefore served as an indicator of ecosystem impacts. ERPs were based on the tradeoff relationship between the equilibrium biomass of striped bass and menhaden fishing mortality (F). The ERPs were defined as the menhaden F rates that maintain striped bass at their biomass target and threshold when striped bass are fished at their Ftarget, and all other modeled species were fished at status quo levels. These correspond to an ERP Ftarget of 0.19 and an ERP Fthreshold of 0.57, which are lower than the single species reference points by 30–40%, but higher than current (2017) menhaden F. The ERPs were then fed back into the age-structured stock assessment model projections to provide information on total allowable catch. The ERPs developed in this study were adopted by the Atlantic menhaden Management Board, marking a shift toward ecosystem-based fishery management for this economically and ecologically important species.


Sign in / Sign up

Export Citation Format

Share Document