scholarly journals Epifauna associated with subsea pipelines in the North Sea

2019 ◽  
Vol 77 (3) ◽  
pp. 1137-1147 ◽  
Author(s):  
Nichola C Lacey ◽  
Peter Hayes

Abstract An increasing number of pipelines across the UK Continental Shelf are reaching the end of their economic life, resulting in a growing impetus on decommissioning. Implicit to the decommissioning process is the evaluation of the environmental impacts of the different decommissioning options, however little is known regarding the epifauna that interact with these structures. This study utilized industry-collected footage from remotely operated vehicle inspections of pipelines to assess the interactions of benthic epifauna with pipelines, and their associated structures, for the first time. Footage was analysed from across the northern and central North Sea to examine relationships between faunal community compositions and pipelines and their protective coverings. The complex habitat of concrete and Link-lok mattresses had the highest numbers of observable taxa. Differences in community composition were largely due to varying proportions of common epilithic species. There was a weak relationship between pipeline covering type and the species composition of the immediately neighbouring substrate. Depth and latitude were the strongest correlators with the observed community compositions. This study has compiled the first dataset on epifaunal associations with subsea pipelines in the North Sea.

2001 ◽  
Vol 20 (1) ◽  
pp. 45-80 ◽  
Author(s):  
Jason Jeremiah

Abstract. Analysis of cored sections from the Central North Sea Basin, boreholes from the onshore Netherlands and onshore sections from the UK and Germany has enabled a major reappraisal of Lower Cretaceous nannofossil datums. The Lower Albian to Upper Barremian interval has, in particular, been comprehensively amended. Five new species, Crucibiscutum bosunensis sp. nov., Crucibiscutum ryazanicum sp. nov., Lithraphidites houghtonii sp. nov., Seribiscutum dentatum sp. nov., Staurolithites palmula sp. nov. and one new sub-species, Biscutum constans cavum ssp. nov. are described.


1996 ◽  
Vol 43 ◽  
pp. 9-21
Author(s):  
Olaf Michelsen

The Cenozoic succession in the Danish part of the North Sea Basin includes two significant breaks in sedimentation; 1) at the Eocene-Oligocene boundary and 2) at mid Miocene time. The sediment transport direction was from the west during the Middle-Late Eocene and mainly from northeast and east in post Eocene times, and a change from a concordant seismic reflection pattern to a progradational pattern is seen. A clear change in Iithology occurs at the Eocene-Oligocene boundary, from a finegrained clay-dominated deposit below the boundary to a clay with silt and mica above. Near shore marine and fluvial sediments of Early Oligocene to mid Miocene age are known from the offshore and onshore areas, witnessing that the coastline migrated into the basin for the first time since the earliest Cretaceous. This change in sedimentation pattern was probably caused by the initial uplift of Scandinavia. At mid Miocene time a significant environmental change occurred in the North Sea. A change from dark coloured to light coloured deposits indicates introduction of a well-oxygenated environment. A marked increase in rate of sedimentation (and subsidence) is evidenced by the approx. 1500 m thick sedimentary package in the central part of the basin. Late Middle Miocene starved sedimentation seen in the central North Sea may indicate a significant increase in subsidence rates. The base of the Quaternary is a major erosional unconformity, mainly created by erosion caused by uplift of Scandinavia. 1000-1200 m of uplift is calculated for the eastern part of the North Sea Basin. With a post-Eocene subsidence of 2500 m in the central North Sea, the amplitude of the post-Eocene tectonic movements is approx. 3700 m.


1965 ◽  
Vol 59 (3) ◽  
pp. 505-522 ◽  
Author(s):  
Richard Young

The possible presence of very large petroleum and natural gas reserves in the area beneath the North Sea is currently the subject of intense investigation. If confirmed, as seems likely in at least some localities, this occurrence will raise legal problems of considerable interest and complexity. For the North Sea is not merely an oilfield covered by water: for centuries it has been one of the world's major fishery regions and the avenue to and from the world's busiest seaports. Thus all three of the present principal uses of the sea—fishing, navigation, and the exploitation of submarine resources—promise to meet for the first time on a large scale in an area where all are of major importance. The process of reconciling the various interests at stake will provide the first thoroughgoing test of the adequacy and acceptability of the general principles laid down in the 1958 Geneva Convention on the Continental Shelf and should add greatly to the practice and precedents available in this developing branch of the law. In the present article an attempt is made to review some of the geographical and economic considerations involved in the North Sea situation, to note some of the technical and legal developments that have already taken place, and to consider these elements in the light of the various interests and legal principles concerned.


2016 ◽  
Vol 13 (8) ◽  
pp. 2511-2535 ◽  
Author(s):  
Fabian Große ◽  
Naomi Greenwood ◽  
Markus Kreus ◽  
Hermann-Josef Lenhart ◽  
Detlev Machoczek ◽  
...  

Abstract. Low oxygen conditions, often referred to as oxygen deficiency, occur regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen, yet, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for oxygen deficiency, but that the complex interaction between hydrodynamics and the biological processes drives its evolution. In this study we use the ecosystem model HAMSOM-ECOHAM to provide a general characterisation of the different zones of the North Sea with respect to oxygen, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics inside the entire sub-thermocline volume and directly above the bottom. With respect to oxygen dynamics, the North Sea can be subdivided into three different zones: (1) a highly productive, non-stratified coastal zone, (2) a productive, seasonally stratified zone with a small sub-thermocline volume, and (3) a productive, seasonally stratified zone with a large sub-thermocline volume. Type 2 reveals the highest susceptibility to oxygen deficiency due to sufficiently long stratification periods (>  60 days) accompanied by high surface productivity resulting in high biological consumption, and a small sub-thermocline volume implying both a small initial oxygen inventory and a strong influence of the biological consumption on the oxygen concentration. Year-to-year variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. The large sub-thermocline volume dominates the oxygen dynamics in the northern central and northern North Sea and makes this region insusceptible to oxygen deficiency. In the southern North Sea the strong tidal mixing inhibits the development of seasonal stratification which protects this area from the evolution of low oxygen conditions. In contrast, the southern central North Sea is highly susceptible to low oxygen conditions (type 2). We furthermore show that benthic diagenetic processes represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50 % of the overall consumption. Thus, primary production followed by remineralisation of organic matter under stratified conditions constitutes the main driver for the evolution of oxygen deficiency in the southern central North Sea. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the estimation of the impact of anthropogenic drivers on the North Sea oxygen conditions.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 151-186 ◽  
Author(s):  
M. Wilkinson ◽  
R. S. Haszeldine ◽  
A. E. Fallick

AbstractThe principal clays of the northern and central North Sea are illite (sometimes with interlayered smectite) and kaolin. Chlorite is only locally important. Although it has been proposed that kaolin within North Sea sandstones is detrital in origin, the majority of workers have concluded that it is authigenic, largely the product of feldspar alteration. Kaolin is found within a wide range of sedimentary settings (and within shales) apparently defying the notion that kaolin is an indicator of meteoric water deposition. Within sandstones, the earliest authigenic kaolin has a vermiform morphology, the distribution of which is controlled by the availability of detrital mica to act as a nucleus, and the composition of the post-depositional porewaters. This vermiform kaolin formed in meteoric water, the presence of which is easily accounted for below sub-aerial exposure surfaces in non-marine formations, and below unconformities over marine units. In fully marine sands, and even marine shale units, kaolin still occurs. It has therefore been suggested that even these locations have been flushed with meteoric water.Early vermiform kaolin recrystallizes to a more blocky morphology as burial proceeds, at least in the Brent Group. Blocky kaolin has been reported as growing before, synchronously with, and after the formation of quartz overgrowths, though oxygen isotope studies support low-temperature growth, pre-quartz. Blocky kaolin may form during meteoric flushing associated with lower Cretaceous uplift and erosion, though it is found in fault blocks that are thought to have remained below sea level. Here, the kaolin may form in stagnant meteoric water, relics of the post-depositional porewater. It has also been proposed that the blocky kaolin grew in ascending basinal waters charged with carboxylic acids and CO2, though this hypothesis is not supported by stable oxygen isotope data. Some of the blocky kaolin is dickite, the stable polymorph above ∼100°C.Fibrous illite occurs almost ubiquitously within the clastic sediments of the North Sea. An early pore-lining phase has been interpreted as both infiltrated clastic clay, and as an early diagenetic phase. Early clays may have been quite smectite-rich illites, or even discrete smectites. Later, fibrous illite is undoubtedly neoformed, and can degrade reservoir quality significantly. Both within sandstones and shales, there is an apparent increase in the K content deeper than 4 km of burial, which could be due to dilution of the early smectite-rich phase by new growth illite, or to the progressive illitization of existing I-S. Much of the ‘illite’ that has been dated by the K-Ar method may therefore actually be I-S.The factors that control the formation of fibrous illite are only poorly known, though temperature must play a role. Illite growth has been proposed for almost the entire range of diagenetic temperatures (e.g. 15–20°C, Brent Group; 35–40°C, Oxfordian Sand, Inner Moray Firth; 50–90°C, Brae formation; 100–110°C, Brent Group; 130–140°C, Haltenbanken). It seems unlikely that there is a threshold temperature below which illite growth is impossible (or too slow to be significant), though this is a recurring hypothesis in the literature. Instead, illite growth seems to be an event, commonly triggered by oil emplacement or another change in the physiochemical conditions within the sandstone, such as an episode of overpressure release. Hence fibrous illite can grow at any temperature encountered during diagenesis.Although there is an extensive dataset of K-Ar ages of authigenic illites from the Jurassic of the North Sea, there is no consensus as to whether the data are meaningful, or whether the purified illite samples prepared for analysis are so contaminated with detrital phases as to render the age data meaningless. At present it is unclear about how to resolve this problem, though there is some indication that chemical micro-analysis could help. It is a common belief that illite ages record the timing of oil charge, and so can be used to calibrate basin models.Grain-coating Fe-rich chlorite cements can preserve exceptional porosity during burial. They are found in marginal marine sandstones, formed during diagenesis from precursor Fe-rich clays such as berthierine or verdine.


2018 ◽  
Vol 75 (6) ◽  
pp. 2033-2044 ◽  
Author(s):  
Arved Staby ◽  
Jon Egil Skjæraasen ◽  
Audrey J Geffen ◽  
Daniel Howell

Abstract Catches of European hake (Merluccius merluccius) in the North Sea have increased substantially during the last decade, even though there is no directed commercial fishery of hake in this area. We analysed the spatial distributions of hake in the northern the parts of its range, (where it is less well-studied), using ICES international bottom trawl survey data from 1997 to 2015. We examine length-frequency distributions for (i) distinct modes enabling the assignment of fish into categories which likely corresponded to the ages 1, 2, and 3+ and (ii) patterns of seasonal spatial distribution for the different groups. Age categories 1 and 2 fish were most abundant in the northern North Sea, and appear to remain in the North Sea until 2 years of age, when they move into deeper waters. Their distribution has expanded into the western-central North Sea in the last decade. Age category 3+ fish were most abundant in the northern and central North Sea during summer, indicating a seasonal influx of large individuals into this area likely associated with spawning activity. The distribution of these older fish has gradually expanded westward in both seasons.


Author(s):  
M.N Tsimplis ◽  
D.K Woolf ◽  
T.J Osborn ◽  
S Wakelin ◽  
J Wolf ◽  
...  

Within the framework of a Tyndall Centre research project, sea level and wave changes around the UK and in the North Sea have been analysed. This paper integrates the results of this project. Many aspects of the contribution of the North Atlantic Oscillation (NAO) to sea level and wave height have been resolved. The NAO is a major forcing parameter for sea-level variability. Strong positive response to increasing NAO was observed in the shallow parts of the North Sea, while slightly negative response was found in the southwest part of the UK. The cause of the strong positive response is mainly the increased westerly winds. The NAO increase during the last decades has affected both the mean sea level and the extreme sea levels in the North Sea. The derived spatial distribution of the NAO-related variability of sea level allows the development of scenarios for future sea level and wave height in the region. Because the response of sea level to the NAO is found to be variable in time across all frequency bands, there is some inherent uncertainty in the use of the empirical relationships to develop scenarios of future sea level. Nevertheless, as it remains uncertain whether the multi-decadal NAO variability is related to climate change, the use of the empirical relationships in developing scenarios is justified. The resulting scenarios demonstrate: (i) that the use of regional estimates of sea level increase the projected range of sea-level change by 50% and (ii) that the contribution of the NAO to winter sea-level variability increases the range of uncertainty by a further 10–20 cm. On the assumption that the general circulation models have some skill in simulating the future NAO change, then the NAO contribution to sea-level change around the UK is expected to be very small (<4 cm) by 2080. Wave heights are also sensitive to the NAO changes, especially in the western coasts of the UK. Under the same scenarios for future NAO changes, the projected significant wave-height changes in the northeast Atlantic will exceed 0.4 m. In addition, wave-direction changes of around 20° per unit NAO index have been documented for one location. Such changes raise the possibility of consequential alteration of coastal erosion.


2003 ◽  
Vol 20 (1) ◽  
pp. 761-770 ◽  
Author(s):  
A. P. Hillier

AbstractDiscovered in 1966 and starting production in 1968, Leman was the second gas field to come into production in the UK sector of the North Sea and is still producing gas today. It is classified as a giant field with an estimated initial gas-in-place of 397 BCM of gas in the aeolian dune sands of the Rotliegend Group. The field extends over five blocks and is being developed by two licence groups with Shell and Amoco (now BP Amoco) being the operators


Author(s):  
J.W. Horwood ◽  
R.S. Millner

Large catches of sole (Solea solea) were made in early 1996 from the south-western North Sea. Sole suffer physiological damage in waters below 3–4 C. In February 1996 cold water of 3–4 C unusually extended from the Continental coast onto the Dogger Bank. It is likely that the increased catches were due to the consequential distribution and behaviour of the sole, making them more susceptible to capture.Exceptionally large catches of mature sole (Solea solea (L.)) were made in February 1996 by Lowestoft fishermen from the south-western North Sea. Surprisingly this was not welcome. The UK allocation of the North Sea sole is -4 % of the EU Total Allowable Catch (TAC), and fishermen are restricted nationally, and by the fishing companies, to a tightly managed ration. The Lowestoft Journal (8 March 1996) reported the suspension of a local fishing skipper for not throwing back 5000 kg of sole caught in the Silver Pits. We will show that the abnormal catches were due to exceptionally cold waters.Sole in the North Sea are at the northern extremity of their range, with sole seldom living in waters below 5°C (Horwood, 1993). In fact, North Sea sole were successfully introduced into Lake Quarun, Egypt, where they lived in temperatures in excess of 30°C (El-Zarka, 1965). Young sole migrate from their shallow inshore nursery grounds, such as the Waddensea, as winter approaches (Creutzberg & Fonds, 1971).


2003 ◽  
Vol 82 (4) ◽  
pp. 333-337
Author(s):  
M. Rider ◽  
D. Kroon

AbstractA widespread, slumped, redeposited, uppermost Cretaceous chalk interval, up to 60m thick, immediately below the Cretaceous-Tertiary (K-T) boundary, recognised in oil company boreholes across the central North Sea and a major hydrocarbon reservoir, we re-interpret as the result of a single, catastrophic event caused by secondary effects related to the bolide impact at Chicxulub. A thin, dark clay bed immediately above the redeposited chalks, we suggest correlates to the outcropping, Iridium rich, Danish ‘Fish Clay’, rapidly deposited after the impact. Physical effects on sea-floor sediments, caused by the K-T bolide impact, have not previously been interpreted in the North Sea.


Sign in / Sign up

Export Citation Format

Share Document