Stabilization of an uncertain large-scale time-dependent bilinear neutral differential system by memory feedback control

2001 ◽  
Vol 18 (1) ◽  
pp. 1-18 ◽  
Author(s):  
H. Guang-Di
2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


Author(s):  
Ömer Verbas ◽  
Joshua Auld ◽  
Hubert Ley ◽  
Randy Weimer ◽  
Shon Driscoll

This paper proposes a time-dependent intermodal A* (TDIMA*) algorithm. The algorithm works on a multimodal network with transit, walking, and vehicular network links, and finds paths for the three major modes (transit, walking, driving) and any feasible combination thereof (e.g., park-and-ride). Turn penalties on the vehicular network and progressive transfer penalties on the transit network are considered for improved realism. Moreover, upper bounds to prevent excessive waiting and walking are introduced, as well as an upper bound on driving for the park-and-ride (PNR) mode. The algorithm is validated on the large-scale Chicago Regional network using real-world trips against the Google Directions API and the Regional Transit Authority router.


2001 ◽  
Vol 432 ◽  
pp. 219-283 ◽  
Author(s):  
G. BRIASSULIS ◽  
J. H. AGUI ◽  
Y. ANDREOPOULOS

A decaying compressible nearly homogeneous and nearly isotropic grid-generated turbulent flow has been set up in a large scale shock tube research facility. Experiments have been performed using instrumentation with spatial resolution of the order of 7 to 26 Kolmogorov viscous length scales. A variety of turbulence-generating grids provided a wide range of turbulence scales with bulk flow Mach numbers ranging from 0.3 to 0.6 and turbulent Reynolds numbers up to 700. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was also found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A possible mechanism responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid. Measurements of the time-dependent, three dimensional vorticity vectors were attempted for the first time with a 12-wire miniature probe. This also allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. It was found that the fluctuations of these quantities increase with increasing mean Mach number of the flow. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause.


Sign in / Sign up

Export Citation Format

Share Document