The Effect of Artificial Blood Meals Containing the Hydroxynaphthoquinone M2279 on the Developmental Cycle of Plasmodium Gallinaceum in Aedes Aegypti

1948 ◽  
Vol 82 (3) ◽  
pp. 251-255 ◽  
Author(s):  
L. Whitman
Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Matthew W. Hopken ◽  
Limarie J. Reyes-Torres ◽  
Nicole Scavo ◽  
Antoinette J. Piaggio ◽  
Zaid Abdo ◽  
...  

Urban ecosystems are a patchwork of habitats that host a broad diversity of animal species. Insects comprise a large portion of urban biodiversity which includes many pest species, including those that transmit pathogens. Mosquitoes (Diptera: Culicidae) inhabit urban environments and rely on sympatric vertebrate species to complete their life cycles, and in this process transmit pathogens to animals and humans. Given that mosquitoes feed upon vertebrates, they can also act as efficient samplers that facilitate detection of vertebrate species that utilize urban ecosystems. In this study, we analyzed DNA extracted from mosquito blood meals collected temporally in multiple neighborhoods of the San Juan Metropolitan Area, Puerto Rico to evaluate the presence of vertebrate fauna. DNA was collected from 604 individual mosquitoes that represented two common urban species, Culex quinquefasciatus (n = 586) and Aedes aegypti (n = 18). Culex quinquefasciatus fed on 17 avian taxa (81.2% of blood meals), seven mammalian taxa (17.9%), and one reptilian taxon (0.85%). Domestic chickens dominated these blood meals both temporally and spatially, and no statistically significant shift from birds to mammals was detected. Aedes aegypti blood meals were from a less diverse group, with two avian taxa (11.1%) and three mammalian taxa (88.9%) identified. The blood meals we identified provided a snapshot of the vertebrate community in the San Juan Metropolitan Area and have potential implications for vector-borne pathogen transmission.


2017 ◽  
Vol 115 (2) ◽  
pp. 361-366 ◽  
Author(s):  
Lauren B. Carrington ◽  
Bich Chau Nguyen Tran ◽  
Nhat Thanh Hoang Le ◽  
Tai Thi Hue Luong ◽  
Truong Thanh Nguyen ◽  
...  

The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses.


1966 ◽  
Vol 131 (suppl_9) ◽  
pp. 984-992 ◽  
Author(s):  
J. A. Terzakis ◽  
H. Sprinz ◽  
R. A. Ward

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 695 ◽  
Author(s):  
Antoine Boullis ◽  
Nadège Cordel ◽  
Cécile Herrmann-Storck ◽  
Anubis Vega-Rúa

The pandemic emergence of several mosquito-borne viruses highlights the need to understand the different ways in which they can be transmitted by vectors to human hosts. In this study, we evaluated the propensity of Aedes aegypti to transmit mechanically Zika virus (ZIKV) using an experimental design. Mosquitoes were allowed to feed on ZIKV-infected blood and were then rapidly transferred to feed on ZIKV-free blood until they finished their meal. The uninfected blood meals, the mosquito abdomens, as well as the mouthparts dissected from fully and partially engorged mosquitoes were analyzed using RT-qPCR and/or virus titration. All the fully engorged mosquito abdomens were ZIKV-infected, whereas their mouthparts were all ZIKV-negative. Nonetheless, one of the partially engorged mosquitoes carried infectious particles on mouthparts. No infectious virus was found in the receiver blood meals, while viral RNA was detected in 9% of the samples (2/22). Thus, mechanical transmission of ZIKV may sporadically occur via Ae. aegypti bite. However, as the number of virions detected on mouthparts (2 particles) is not sufficient to induce infection in a naïve host, our results indicate that mechanical transmission does not impact ZIKV epidemiology.


1976 ◽  
Vol 66 (4) ◽  
pp. 671-679 ◽  
Author(s):  
P. F. L. Boreham ◽  
J. K. Lenahan

AbstractTwo techniques have been developed to investigate the incidence of multiple feeding by mosquitoes. One system detects the ABO blood group substances and can be used up to 24 h after feeding in the case of Anopheles stephensi List. and 30 h for Aedes aegypti (L.). It is limited by cross-reactions which develop between blood group substances as digestion occurs in the stomach of the mosquito. The second system detects the serum protein haptoglobins (Hp) and it is possible to detect the Hp type of blood in single feeds 20 h after feeding for Ae. aegypti and 16 h for A. stephensi. Multiple feeds taken within a short time of each other can be identified up to 16 h after completion of the meal. The minimum amount of blood necessary to effect an identification in a fresh two-part meal is 0·1 mg, which is approximately one-tenth of the total amount of blood taken. It is now therefore possible to measure multiple ‘cryptic meals’ taken from man, if they are of different Hp types. Identification of Hp from A. gambiae sp. A blood-meals has been successfully carried out using material sent from the tropics. Limitations of the techniques as applied to field collections are discussed.


2011 ◽  
Vol 57 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Ricardo Vieira Araujo ◽  
Ceres Maciel ◽  
Klaus Hartfelder ◽  
Margareth Lara Capurro

Sign in / Sign up

Export Citation Format

Share Document