virus titration
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 144 ◽  
pp. 105577
Author(s):  
Roberto C.V. Burbano ◽  
Marcos C. Gonçalves ◽  
Paula M. Nobile ◽  
Ivan A. dos Anjos ◽  
Marcel F. da Silva ◽  
...  

2021 ◽  
pp. 198493
Author(s):  
Shweta Choudhary ◽  
Neetu Neetu ◽  
Vedita Anand Singh ◽  
Pravindra Kumar ◽  
Madhulika Chaudhary ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Sissy Therese Sonnleitner ◽  
Julian Dorighi ◽  
Bianca Jansen ◽  
Carmen Schönegger ◽  
Sarah Gietl ◽  
...  

Abstract Background At the beginning of the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), little was known about its actual rate of infectivity and any COVID-19 patient positive in laboratory testing was supposed to be highly infective and a public health risk factor. Methods One hundred oropharyngeal samples were obtained during routine work flow of testing symptomatic persons by quantitative polymerase chain reaction (qPCR) and were inoculated onto cell culture of VeroB4 cells to study the degree of infectivity of SARS-CoV-2 in vitro. Quantification by virus titration and an external standard using synthetic RNA gave the breaking point of infectivity in SARS-CoV-2 in vitro. Results A clear negative correlation (r = − 0.76; p < 0.05) could be asserted between the viral load in quantitative polymerase chain reaction (qPCR) and the probability of a successful isolation in serial isolation experiments of specific oropharyngeal samples positive in qPCR. Quantification by virus titration and an external standard using synthetic RNA indicate a Cq between 27 and 30 in E-gene screening PCR as a breaking point in vitro, where infectivity decreases significantly and isolations become less probable. Conclusions This study showed that only the 21% of samples with the highest viral load were infectious enough to transmit the virus in vitro and determined that the dispersion rate in vitro is surprisingly close to those calculated in large retrospective epidemiological studies for SARS-CoV-2. This raises the question of whether this simple in vitro model is suitable to give first insights in dispersion characters of novel or neglected viral pathogens. The statement that SARS-CoV-2 needs at least 40,000 copies to reliably induce infection in vitro is an indication of its transmissibility in Public Health decisions. Applying quantitative PCR systems in diagnosis of SARS-CoV2 can distinguish between patients providing a high risk of transmission and those, where the risk of transmission is probably limited to close and long-lasting contacts.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 312
Author(s):  
Magdalena Dunowska ◽  
Sayani Ghosh

Feline infectious peritonitis (FIP) is a sporadic fatal disease of cats caused by a virulent variant of feline coronavirus (FCoV), referred to as FIP virus (FIPV). Treatment options are limited, and most of the affected cats die or are euthanized. Anecdotally, doxycycline has been used to treat FIP-affected cats, but there are currently no data to support or discourage such treatment. The aim of this study was to establish whether doxycycline inhibits replication of FIPV in vitro. The virus was cultured in Crandell-Rees feline kidney cells with various concentrations of doxycycline (0 to 50 µg/mL). The level of FIPV in cultures was determined by virus titration and FCoV-specific reverse-transcription quantitative PCR. Cell viability was also monitored. There was no difference in the level of infectious virus or viral RNA between doxycycline-treated and untreated cultures at 3, 12- and 18-hours post-infection. However, at 24 h, the growth of FIPV was inhibited by approximately two logs in cultures with >10 µg/mL doxycycline. This inhibition was dose-dependent, with inhibitory concentration 50% (IC50) 4.1 µg/mL and IC90 5.4 µg/mL. Our data suggest that doxycycline has some inhibitory effect on FIPV replication in vitro, which supports future clinical trials of its use for the treatment of FIP-affected cats.


protocols.io ◽  
2019 ◽  
Author(s):  
Norfitriah Mohamed ◽  
Mohd Hair ◽  
Abdul Rahman ◽  
Aini Ideris ◽  
Nurulfiza Mat
Keyword(s):  

Author(s):  
Won-Young Bae ◽  
Hyeong-Yeop Kim ◽  
Kyoung-Sook Choi ◽  
Kyung Hoon Chang ◽  
Young-Ho Hong ◽  
...  

Abstract Background General antiviral agents such as oseltamivir are associated with certain adverse effects and the emergence of resistance. This study investigated the phytochemical properties, antiviral activities, and safety of three herbs used in traditional Korean medicine. Methods Extracts of three medicinal herbs (Brassica juncea, Forsythia suspensa, and Inula britannica) were prepared using ethanol or water. The total phenolic, flavonoid, and saponin content, condensed tannin content, and reducing sugar content of the herb extracts were determined via phytochemical screening. Tandem mass analysis was performed using an ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-Q/Orbitrap instrument. Virus titrations were determined via tissue culture infective dose (TCID50) and cytotoxicity assays. Hemolysis and hepatotoxicity were measured to determine safety. Results Among the three medicinal herbs, F. suspensa showed the highest concentration of phenolic compounds, flavonoids, and saponins. The number of phytochemical compounds detected via tandem mass analysis of B. juncea, F. suspensa, and I. britannica was 5 (including sinigrin, m/z [M-H] = 358.02), 14 (including forsythoside A, m/z [M-H] = 623.19), and 18 (including chlorogenic acid, m/z [M-H] = 353.20), respectively. The antiviral effects of the B. juncea extracts (ethanol and water) and I. britannica extract (ethanol) were further investigated. The ethanol extract of B. juncea showed a 3 Log TCID50/25 μL virus titration reduction and the water extract showed a selectivity index of 13.668 against infected influenza H1N1 virus A/NWS/33. The B. juncea extracts did not show hemolysis activities and hepatotoxicity (< 20%). The ethanol extract of I. britannica showed the most effective virus titration decrease, whereas its hemolytic and hepatotoxicity values were the most significantly different compared to the control. Despite the high concentration of phytochemicals detected in F. suspensa, the extract showed approximately 1 Log TCID50/25 μL at the highest concentration. Conclusion B. juncea may show antiviral effects against H1N1 in a host. In addition, B. juncea may also show decreased disadvantages compared to other antiviral agents.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 695 ◽  
Author(s):  
Antoine Boullis ◽  
Nadège Cordel ◽  
Cécile Herrmann-Storck ◽  
Anubis Vega-Rúa

The pandemic emergence of several mosquito-borne viruses highlights the need to understand the different ways in which they can be transmitted by vectors to human hosts. In this study, we evaluated the propensity of Aedes aegypti to transmit mechanically Zika virus (ZIKV) using an experimental design. Mosquitoes were allowed to feed on ZIKV-infected blood and were then rapidly transferred to feed on ZIKV-free blood until they finished their meal. The uninfected blood meals, the mosquito abdomens, as well as the mouthparts dissected from fully and partially engorged mosquitoes were analyzed using RT-qPCR and/or virus titration. All the fully engorged mosquito abdomens were ZIKV-infected, whereas their mouthparts were all ZIKV-negative. Nonetheless, one of the partially engorged mosquitoes carried infectious particles on mouthparts. No infectious virus was found in the receiver blood meals, while viral RNA was detected in 9% of the samples (2/22). Thus, mechanical transmission of ZIKV may sporadically occur via Ae. aegypti bite. However, as the number of virions detected on mouthparts (2 particles) is not sufficient to induce infection in a naïve host, our results indicate that mechanical transmission does not impact ZIKV epidemiology.


Sign in / Sign up

Export Citation Format

Share Document