scholarly journals Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes

2017 ◽  
Vol 115 (2) ◽  
pp. 361-366 ◽  
Author(s):  
Lauren B. Carrington ◽  
Bich Chau Nguyen Tran ◽  
Nhat Thanh Hoang Le ◽  
Tai Thi Hue Luong ◽  
Truong Thanh Nguyen ◽  
...  

The wMel strain of Wolbachia can reduce the permissiveness of Aedes aegypti mosquitoes to disseminated arboviral infections. Here, we report that wMel-infected Ae. aegypti (Ho Chi Minh City background), when directly blood-fed on 141 viremic dengue patients, have lower dengue virus (DENV) transmission potential and have a longer extrinsic incubation period than their wild-type counterparts. The wMel-infected mosquitoes that are field-reared have even greater relative resistance to DENV infection when fed on patient-derived viremic blood meals. This is explained by an increased susceptibility of field-reared wild-type mosquitoes to infection than laboratory-reared counterparts. Collectively, these field- and clinically relevant findings support the continued careful field-testing of wMel introgression for the biocontrol of Ae. aegypti-born arboviruses.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniela da Silva Goncalves ◽  
Kien Duong Thi Hue ◽  
Vi Tran Thuy ◽  
Nhu Vu Tuyet ◽  
Giang Nguyen Thi ◽  
...  

Abstract Background Dengue viruses (DENV) can be transmitted from an adult female Aedes aegypti mosquito through the germ line to the progeny; however, there is uncertainty if this occurs at a frequency that is epidemiologically significant. We measured vertical transmission of DENV from field-reared Ae. aegypti to their F1 progeny after feeding upon blood from dengue patients. We also examined the transmission potential of F1 females. Methods We examined the frequency of vertical transmission in field-reared mosquitoes, who fed upon blood from acutely viremic dengue patients, and the capacity for vertically infected females to subsequently transmit virus horizontally, in two sets of experiments: (i) compared vertical transmission frequency of field-reared Ae. aegypti and Ae. albopictus, in individual progeny; and (ii) in pooled progeny derived from field- and laboratory-reared Ae. aegypti. Results Of 41 DENV-infected and isofemaled females who laid eggs, only a single female (2.43%) transmitted virus to one of the F1 progeny, but this F1 female did not have detectable virus in the saliva when 14 days-old. We complemented this initial study by testing for vertical transmission in another 460 field-reared females and > 900 laboratory-reared counterparts but failed to provide any further evidence of vertical virus transmission. Conclusions In summary, these results using field-reared mosquitoes and viremic blood from dengue cases suggest that vertical transmission is uncommon. Field-based studies that build on these observations are needed to better define the contribution of vertical DENV transmission to dengue epidemiology.


Author(s):  
Tanamas Siriphanitchakorn ◽  
Cassandra Modahl ◽  
R. Manjunatha Kini ◽  
Eng Eong Ooi ◽  
Milly Choy

Successful completion of the dengue virus (DENV) life cycle in its mosquito vectors is important for efficient human–mosquito–human cycle of transmission, but the virus–mosquito interactions that underpin this critical event are poorly defined. To understand the virus–host interactions that determine viral infection by Aedes aegypti, the principal DENV vector, the authors compared transcriptomic changes in the head/thorax of the mosquito after intrathoracic infection with the wild-type DENV2 16681 strain and its attenuated derivative, PDK53. Using high-throughput RNA-sequencing, the authors identified 1,629 differentially expressed genes (DEGs) during 16681 infection, compared with only 22 DEGs identified during PDK53 infection, indicating that 16681 infection triggers a more robust host transcriptomic response compared with PDK53 infection. The authors further found that 16681 infection, but not PDK53 infection, altered metabolism in these heads/thoraces. Altogether, our findings reveal differential regulation of metabolic processes during wild-type and attenuated DENV infection, and suggest the need for future work to study the role of metabolic processes in determining DENV infection and replication in its mosquito vectors.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shih-Che Weng ◽  
Po-Nien Tsao ◽  
Shin-Hong Shiao

Abstract Background Dengue fever is the most rapidly spreading mosquito-borne viral disease globally. More than 2.5 billion people live in dengue-endemic areas. Previous studies suggested an interrelationship between diabetes mellitus (DM) and dengue hemorrhagic fever (DHF). Conversely, glycolysis is a critical metabolic pathway for optimal dengue virus (DENV) replication. However, little is known concerning the effect of glucose on DENV replication in mosquitoes. In this study, we investigated the impact of glucose on DENV replication in mosquitoes Aedes aegypti. Methods Mosquitoes (Ae. aegypti UGAL/Rockefeller strain) were orally infected with DENV (serotype 2, 16681 strain) through infectious blood feeding. The DENV infection and transmission rates were determined by examining mosquito bodies and saliva, respectively, for DENV positivity at different time points after infection. In addition, a reverse genetic approach was applied by introducing double-stranded RNA against genes of interest into the mosquitoes to inhibit gene expression. Results Our data revealed a significant increase of DENV genome levels in mosquitoes consuming an infectious blood meal supplemented with glucose, suggesting that blood glucose is an important factor for viral replication. Interestingly, a significant increase of DENV E protein levels was detected in the saliva 4 days faster in mosquitoes that consumed infectious blood meals supplemented with glucose than in those consuming infectious blood meals alone. Furthermore, we perform RNAi to silence AKT or TOR and investigate the molecular mechanism regulating the glucose-mediated enhancement of viral replication. Silencing of AKT or TOR significantly reduced DENV titers in mosquitoes. Conclusions This study suggested that blood glucose is beneficial to DENV replication and that it facilitates virus transmission in mosquitoes via AKT and TOR signaling. Therefore, our results strengthen our understanding of dengue fever and DM co-morbidity and possibly reveal new targets for specific antiviral therapies. Graphical abstract


2022 ◽  
Vol 103 (1) ◽  
Author(s):  
Michael Leitner ◽  
Kayvan Etebari ◽  
Sassan Asgari

Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus–host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia -transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia -transinfected Ae. aegypti’s initial virus recognition and transcriptional response to DENV infection.


2014 ◽  
Vol 8 (07) ◽  
pp. 876-884 ◽  
Author(s):  
Diana Carolina Quintero-Gil ◽  
Marta Ospina ◽  
Jorge Emilio Osorio-Benitez ◽  
Marlen Martinez-Gutierrez

Introduction: Different dengue virus (DENV) serotypes have been associated with greater epidemic potential. In turn, the increased frequency in cases of severe forms of dengue has been associated with the cocirculation of several serotypes. Because Colombia is a country with an endemic presence of all four DENV serotypes, the aim of this study was to evaluate the in vivo and in vitro replication of the DENV-2 and DENV-3 strains under individual infection and coinfection conditions. Methodology: C6/36HT cells were infected with the two strains individually or simultaneously (coinfection). Replication capacity was evaluated by RT-qPCR, and the effects on cell viability were assessed with an MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Additionally, Aedes aegypti mosquitoes were artificially fed the two strains of each serotype individually or simultaneously. The viral genomes were quantified by RT-qPCR and the survival of the infected mosquitoes was compared to that of uninfected controls. Results: In single infections, three strains significantly affected C6/36HT cell viability, but no significant differences were found in the replication capacities of the strains of the same serotype. In the in vivo infections, mosquito survival was not affected, and no significant differences in replication between strains of the same serotype were found. Finally, in coinfections, serotype 2 replicated with a thousandfold greater efficiency than serotype 3 did both in vitro and in vivo. Conclusions: Due to the cocirculation of serotypes in endemic regions, further studies of coinfections in a natural environment would further an understanding of the transmission dynamics that affect DENV infection epidemiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip Raj Abraham ◽  
Bharathy R ◽  
Pradeep Kumar N ◽  
Ashwani Kumar

AbstractDengue, caused by the dengue virus (DENV) is a significant vector-borne disease. In absence of a specific treatment and vaccine, dengue is becoming a rising threat to public health. Currently, control of dengue mainly focuses on the surveillance of the mosquito vectors. Improved surveillance methods for DENV in mosquito populations would be highly beneficial to the public health. However, current methods of DENV detection in mosquitoes requires specialized equipment and expensive reagents and highly trained personnel. As an alternative, commercially available dengue NS1 antigen ELISA kits could be used for detection of DENV infection in Aedes aegypti mosquitoes. In this study, we explored the utility of commercially available Dengue NS1 antigen kit (J. Mitra & Co. Pvt. Ltd) for the detection of recombinant dengue virus-2 (rDENV-2) NS1 protein and serum of dengue infected patient spiked with Ae. aegypti mosquito pools. The kit was found to be highly sensitive and specific towards detection of all serotypes of DENV. Further, it could detect as low as 750 femto gram rDENV-2 NS1 protein. It was also observed that rDENV-2 NS1 antigen spiked with blood-fed and unfed mosquito pools could be detected. In addition, the kit also detected dengue infected patient serum spiked with Ae. aegypti mosquito pools. Overall, the Dengue NS1 antigen kit displayed high sensitivity towards detection of recombinant as well as serum NS1 protein spiked with Ae. aegypti mosquito pools and could be considered for the dengue virus surveillance after a field evaluation in Ae. aegypti mosquitoes.


2018 ◽  
Author(s):  
Mabel L. Taracena ◽  
Vanessa Bottino-Rojas ◽  
Octavio A.C. Talyuli ◽  
Ana Beatriz Walter-Nuno ◽  
José Henrique M. Oliveira ◽  
...  

AbstractAedes aegypti is the vector of some of the most important vector-borne diseases like Dengue, Chikungunya, Zika and Yellow fever, affecting millions of people worldwide. The cellular processes that follow a blood meal in the mosquito midgut are directly associated with pathogen transmission. We studied the homeostatic response of the midgut against oxidative stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation led to an increase in ROS production by the epithelial cells in response to contact with the resident microbiota, suggesting that maintenance of low levels of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation of the regeneration process compared with the refractory strain. Impairment of the Delta/Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the susceptibility of the refractory strains to DENV infection of the midgut. We propose that this cell replenishment is essential to control viral infection in the mosquito. Our study demonstrates that the intestinal epithelium of the blood fed mosquito is able to respond and defend against different challenges, including virus infection. In addition, we provide unprecedented evidence that the activation of a cellular regenerative program in the midgut is important for the determination of the mosquito vectorial competence.


2020 ◽  
Vol 33 (1) ◽  
pp. 38-47
Author(s):  
Manuel Castillo-Méndez ◽  
Verónica Valverde-Garduño

Sign in / Sign up

Export Citation Format

Share Document