scholarly journals Nonstructured Treatment Interruptions Are Associated With Higher Human Immunodeficiency Virus Reservoir Size Measured by Intact Proviral DNA Assay in People Who Inject Drugs

Author(s):  
Gregory D Kirk ◽  
Jacqueline Astemborski ◽  
Shruti H Mehta ◽  
Kristen D Ritter ◽  
Gregory M Laird ◽  
...  

Abstract The latent reservoir for human immunodeficiency virus type 1 (HIV-1) in CD4+ T cells is a major barrier to cure. HIV-1–infected persons who inject drugs (PWID) often struggle to maintain suppression of viremia and experience nonstructured treatment interruptions (NTIs). The effects of injecting drugs or NTIs on the reservoir are unclear. Using the intact proviral DNA assay, we found no apparent effect of heroin or cocaine use on reservoir size. However, we found significantly larger reservoirs in those with frequent NTIs or a shorter interval from last detectable HIV RNA measurement. These results have important implications for inclusion of PWID in HIV-1 cure studies.

2019 ◽  
Author(s):  
Ruian Ke ◽  
Kai Deng

AbstractA major barrier to finding a cure for human immunodeficiency virus type-I (HIV-1) infection is the existence and persistence of the HIV-1 latent reservoir. Although the size of the reservoir is shown to be extremely stable under effective antiretroviral therapy, multiple lines of evidence suggest that the reservoir is composed of dynamic and heterogeneous subpopulations. Quantifying the dynamics of these subpopulations and the processes that maintain the latent reservoir is crucial to the development of effective strategies to eliminate this reservoir. Here, we constructed a mathematical model to consider four latently infected subpopulations, according to their ability to proliferate and the type of virus they are infected. Our model explains a wide range of clinical observations, including variable estimates of the reservoir half-life and dynamical turnover of cytotoxic T lymphocyte (CTL) escape viruses in the reservoir. It suggests that very early treatment leads to a reservoir that is small in size and is composed of less stable latently infected cells (compared to the reservoir in chronically infected individuals). The shorter half-lives estimated from individuals treated during acute infection is likely driven by cells that are less prone to proliferate; in contrast, the remarkably consistent estimate of the long half-lives in individuals who are treated during chronic infection are driven by fast proliferating cells that are likely to be infected by CTL escape mutants. Our model shed light on the dynamics of the reservoir in the absence and presence of antiretroviral therapy. More broadly, it can be used to estimate the turnover rates of subpopulations of the reservoir as well as to design and evaluate the impact of various therapeutic interventions to purge the HIV-1 reservoir.Author summaryHuman immunodeficiency virus (HIV) infects tens of millions of people globally and causes approximately a million death each year. Current treatment for HIV infection suppresses viral load but does not eradicates the virus. A major barrier to cure HIV infection is the existence and persistence of populations of cells that are latently infected by HIV, i.e. the HIV latent reservoir. Understanding and quantifying the kinetics of the reservoir is therefore critical for developing and evaluating effective therapies to purge the reservoir. Recent studies suggested that this reservoir is heterogenous in their population dynamics; yet most previous mathematical models consider this reservoir as a homogenous population. Here we developed a model explicitly tracking the heterogenous subpopulations of the reservoir. We show that this model explains a wide range of clinical observations, and then demonstrate its utility to make quantitative predictions about varies interventions that aim to restrict or reduce the size of the reservoir.


Author(s):  
Emmanouil Papasavvas ◽  
Livio Azzoni ◽  
Brian N Ross ◽  
Matthew Fair ◽  
Zhe Yuan ◽  
...  

Abstract Accurate characterization of the human immunodeficiency virus (HIV) reservoir is imperative to develop an effective cure. HIV was measured in antiretroviral therapy-suppressed individuals using the intact proviral DNA assay (IPDA), along with assays for total or integrated HIV DNA, and inducible HIV RNA or p24. Intact provirus correlated with total and integrated HIV.


Author(s):  
M.A. Tyumentseva ◽  
◽  
A.I. Tyumentsev ◽  
V.G. Akimkin ◽  
◽  
...  

For the effective functioning of supervisory and health monitoring services, it is necessary to introduce modern molecular technologies into their practice. Therefore, the task of developing new effective methods for detecting pathogen, for example HIV, based on CRISPR/CAS genome editing systems, remains urgent. In the present work, guide RNAs and specific oligonucleotides were developed for preliminary amplification of highly conserved regions of the HIV-1 genome. The developed guide RNAs make it possible to detect single copies of HIV-1 proviral DNA in vitro as part of CRISPR/CAS ribonucleoprotein complexes in biological samples after preliminary amplification.


Blood ◽  
1990 ◽  
Vol 76 (7) ◽  
pp. 1281-1286 ◽  
Author(s):  
D von Laer ◽  
FT Hufert ◽  
TE Fenner ◽  
S Schwander ◽  
M Dietrich ◽  
...  

Abstract Hematologic abnormalities occur in the majority of patients with acquired immunodeficiency syndrome (AIDS). Infection of the hematopoietic progenitor cells has been proposed as a potential explanation. In this study, different bone marrow cell populations, including the CD34+ hematopoietic progenitor cells, were purified by a fluorescence-activated cell sorter (FACS) and analyzed for the presence of human immunodeficiency virus-1 (HIV-1) proviral DNA using the polymerase chain reaction. A group of 14 patients with AIDS or AIDS- related complex (ARC) was studied (11 with peripheral blood cytopenias). The CD4+ helper cells in the bone marrow were found positive for HIV-1 DNA in all patients. In contrast, CD34+ progenitor cells were positive in only one patient. Two monocyte samples and two samples of CD4-/CD34- lymphocytes/blasts (mainly B and CD8 lymphocytes) were positive. Proviral DNA could not be detected in granulocytes. FACS analysis showed that the percentage of CD34+ hematopoietic progenitor cells was not altered in the bone marrow of AIDS patients in comparison with the HIV-1 seronegative controls. In contrast, the number of CD4+ lymphocytes was markedly reduced in the bone marrow of AIDS patients. These results show that the hematologic abnormalities in AIDS patients are neither explained by direct infection of the hematopoietic progenitor cells with HIV-1 nor by a depletion of progenitor cells.


Author(s):  
Kenneth Maswabi ◽  
Gbolahan Ajibola ◽  
Kara Bennett ◽  
Edmund V Capparelli ◽  
Patrick Jean-Philippe ◽  
...  

Abstract Background Early antiretroviral therapy (ART) is recommended for infants with human immunodeficiency virus (HIV) infection. However, few antiretroviral options are available for neonates. Methods The Early Infant Treatment Study in Botswana tested HIV-exposed infants within 96 hours of birth, and HIV-infected infants started nevirapine (NVP) 6 mg/kg twice daily, zidovudine (ZDV), and lamivudine (3TC) at age < 7 days. NVP trough concentrations were tested at 1 and 2 weeks. NVP was switched to ritonavir-boosted lopinavir (LPV/r) at week 2, 3, 4, or 5 according to delivery gestational age. Results Forty HIV-infected infants started ART at median age 2 days (range, 1–5 days). NVP trough concentrations were highly variable and below therapeutic target (3000 ng/mL) for 50% of 2-week measurements; concentrations did not correlate with viral decline at weeks 2, 4, or 12. Two deaths unrelated to ART occurred through 24 weeks. Only 1 unscheduled treatment modification was required. Within 4 weeks of transition to LPV/r, 9 (22.5%) had transient HIV RNA increases, likely due to poor LPV/r palatability. At 12 weeks, 22 (55%) of 40 were <40 copies/mL (93% <400 copies/mL); by 24 weeks, 27 of 38 (71%) were < 40 copies/mL (84% < 400 copies/mL). HIV-1 RNA response at 12 and 24 weeks did not differ by baseline HIV RNA or other factors. Conclusions NVP/ZDV/3TC started in the first week of life was safe and effective, even when trough NVP levels were below target. Transient viral increases occurred following transition to LPV/r, but by 12 and 24 weeks most children achieved and maintained viral suppression. Clinical Trials Registration U01AII4235.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S455-S455
Author(s):  
Erin Keizur ◽  
Drew Wood-Palmer ◽  
Maryann Koussa ◽  
Manuel Ocasio ◽  
Mary Jane Rotheram-Borus ◽  
...  

Abstract Background Human immunodeficiency virus (HIV)-1 RNA quantification is the primary method of monitoring response to antiretroviral therapy. In the U.S. viral RNA testing is recommended for all HIV-infected patients at entry into care, at initiation or modification of therapy, and on a regular basis thereafter. HIV-1 DNA testing may pose additional advantages. For example, proviral DNA may predict early loss of viral suppression. The Cepheid® (Sunnyvale, CA) HIV-1 Qualitative (HIV Qual) assay detects total nucleic acid for both RNA and DNA and provides a qualitative result (HIV detectable or undetectable). Methods We tested participants aged 14–24 years old from the Adolescent Trials Network (ATN) CARES study with known HIV infection in Los Angeles, California and New Orleans, Louisiana. We tested participants using the Cepheid® HIV Qual assay and the quantitative HIV-1 RNA, real-time PCR test using the COBAS P6800 system (Roche, Branchburg, NJ). We used 100 μL of whole blood for the HIV Qual assay and results were provided in 90 minutes. We sent the remainder of the whole blood from the same visit to a commercial laboratory for HIV-RNA PCR testing and results were reported as “detected,” “detected, <20 copies/mL plasma” or “not detected, <20 copies/mL plasma.” We compared HIV Qual and HIV RNA PCR test results from the same visit for each participant. Results Overall, 57 HIV Qual tests were performed with concurrent HIV RNA PCR tests. Of those, 9/15 tests were concordant with HIV viral RNA suppression while 39/42 tests were concordant with HIV viral RNA detection. In 6 cases, the HIV RNA was not detected at <20 copies/mL by the Roche PCR while the HIV Qual assay detected HIV DNA. Of those 6 cases, 3 had subsequent HIV RNA PCR testing. All 3 cases had detectable HIV RNA at their next testing date (214 copies/mL, detected <20 copies/mL, 2130 copies/mL). Conclusion The HIV Qual test is feasible for the monitoring of HIV-infection. Due to its detection of HIV DNA, it may predict future lack of HIV RNA suppression. Disclosures All authors: No reported disclosures.


2015 ◽  
Vol 2 (4) ◽  
Author(s):  
Daniel I. S. Rosenbloom ◽  
Oliver Elliott ◽  
Alison L. Hill ◽  
Timothy J. Henrich ◽  
Janet M. Siliciano ◽  
...  

Abstract Limiting dilution assays are widely used in infectious disease research. These assays are crucial for current human immunodeficiency virus (HIV)-1 cure research in particular. In this study, we offer new tools to help investigators design and analyze dilution assays based on their specific research needs. Limiting dilution assays are commonly used to measure the extent of infection, and in the context of HIV they represent an essential tool for studying latency and potential curative strategies. Yet standard assay designs may not discern whether an intervention reduces an already miniscule latent infection. This review addresses challenges arising in this setting and in the general use of dilution assays. We illustrate the major statistical method for estimating frequency of infectious units from assay results, and we offer an online tool for computing this estimate. We recommend a procedure for customizing assay design to achieve desired sensitivity and precision goals, subject to experimental constraints. We consider experiments in which no viral outgrowth is observed and explain how using alternatives to viral outgrowth may make measurement of HIV latency more efficient. Finally, we discuss how biological complications, such as probabilistic growth of small infections, alter interpretations of experimental results.


2003 ◽  
Vol 77 (19) ◽  
pp. 10227-10236 ◽  
Author(s):  
Dean H. Hamer ◽  
Sven Bocklandt ◽  
Louise McHugh ◽  
Tae-Wook Chun ◽  
Peter M. Blumberg ◽  
...  

ABSTRACT Drugs that induce human immunodeficiency virus type 1 (HIV-1) replication could be used in combination with highly active antiretroviral therapy (HAART) to reduce the size of the latent reservoir that is in part responsible for viral persistence. Protein kinase C (PKC) is a logical target for such drugs because it activates HIV-1 transcription through multiple mechanisms. Here we show that HIV-1 gene expression can be induced by potent synthetic analogues of the lipid second messenger diacylglycerol (DAG) synthesized on a five-member ring platform that reduces the entropy of binding relative to that of the more flexible DAG template. By varying the alkyl side chains of these synthetic DAG lactones, it was possible to maximize their potency and ability to render latently infected T cells sensitive to killing by an anti-HIV-1 immunotoxin while minimizing the side effects of CD4 and CXCR4 downregulation and tumor necrosis factor alpha upregulation. The two lead compounds, LMC03 and LMC07, regulated a series of PKC-sensitive genes involved in T-cell activation and induced viral gene expression in peripheral blood mononuclear cells from HIV-1-infected individuals. These studies demonstrate the potential for the rational design of agents that, in conjunction with HAART and HIV-specific toxins, can be used to decrease or eliminate the pool of latently infected reservoirs by forcing viral expression.


2001 ◽  
Vol 75 (15) ◽  
pp. 6941-6952 ◽  
Author(s):  
George M. Bahr ◽  
Edith C. A. Darcissac ◽  
Nathalie Castéran ◽  
Corinne Amiel ◽  
Cécile Cocude ◽  
...  

ABSTRACT We have previously observed that the synthetic immunomodulator Murabutide inhibits human immunodeficiency virus type 1 (HIV-1) replication at multiple levels in macrophages and dendritic cells. The present study was designed to profile the activity of Murabutide on CD8-depleted phytohemagglutinin-activated lymphocytes from HIV-1-infected subjects and on the outcome of HIV-1 infection in severe combined immunodeficiency mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice). Maintaining cultures of CD8-depleted blasts from 36 patients in the presence of Murabutide produced dramatically reduced levels of viral p24 protein in the supernatants. This activity correlated with reduced viral transcripts and proviral DNA, was evident in cultures harboring R5, X4-R5, or X4 HIV-1 isolates, was not linked to inhibition of cellular DNA synthesis, and did not correlate with β-chemokine release. Moreover, c-myc mRNA expression was down-regulated in Murabutide-treated cells, suggesting potential interference of the immunomodulator with the nuclear transport of viral preintegration complexes. On the other hand, daily treatment of HIV-1-infected hu-PBL-SCID mice with Murabutide significantly reduced the viral loads in plasma and the proviral DNA content in human peritoneal cells. These results are the first to demonstrate that a clinically acceptable synthetic immunomodulator with an ability to enhance the host's nonspecific immune defense mechanisms against infections can directly regulate cellular factors in infected lymphocytes, leading to controlled HIV-1 replication.


Sign in / Sign up

Export Citation Format

Share Document