Attenuated Listeria monocytogenes as a live vector for induction of CD8+ T cells in vivo: a study with the nucleoprotein of the lymphocytic choriomeningitis virus

1995 ◽  
Vol 7 (5) ◽  
pp. 797-805 ◽  
Author(s):  
Pierre L. Goossens ◽  
Geneviève Milon ◽  
Pascale Cossart ◽  
Marie-Françoise Saron
Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 4928-4938 ◽  
Author(s):  
Patricia Ribeiro-dos-Santos ◽  
Emma L. Turnbull ◽  
Marta Monteiro ◽  
Agnès Legrand ◽  
Karen Conrod ◽  
...  

Abstract CD8 T cells lose the capacity to control HIV infection, but the extent of the impairment of CD8 T-cell functions and the mechanisms that underlie it remain controversial. Here we report an extensive ex vivo analysis of HIV-specific CD8 T cells, covering the expression of 16 different molecules involved in CD8 function or differentiation. This approach gave remarkably homogeneous readouts in different donors and showed that CD8 dysfunction in chronic HIV infection was much more severe than described previously: some Ifng transcription was observed, but most cells lost the expression of all cytolytic molecules and Eomesodermin and T-bet by chronic infection. These results reveal a cellular mechanism explaining the dysfunction of CD8 T cells during chronic HIV infection, as CD8 T cells are known to maintain some functionality when either of these transcription factors is present, but to lose all cytotoxic activity when both are not expressed. Surprisingly, they also show that chronic HIV and lymphocytic choriomeningitis virus infections have a very different impact on fundamental T-cell functions, “exhausted” lymphocytic choriomeningitis virus-specific cells losing the capacity to secrete IFN-γ but maintaining some cytotoxic activity as granzyme B and FasL are overexpressed and, while down-regulating T-bet, up-regulating Eomesodermin expression.


2006 ◽  
Vol 81 (4) ◽  
pp. 2002-2011 ◽  
Author(s):  
David Masopust ◽  
Kaja Murali-Krishna ◽  
Rafi Ahmed

ABSTRACT Measuring the magnitudes and specificities of antiviral CD8 T-cell responses is critical for understanding the dynamics and regulation of adaptive immunity. Despite many excellent studies, the accurate measurement of the total CD8 T-cell response directed against a particular infection has been hampered by an incomplete knowledge of all CD8 T-cell epitopes and also by potential contributions of bystander expansion among CD8 T cells of irrelevant specificities. Here, we use several techniques to provide a more complete accounting of the CD8 T-cell response generated upon infection of C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV). Eight days following infection, we found that 85 to 95% of CD8 T cells exhibit an effector phenotype as indicated by granzyme B, 1B11, CD62L, CD11a, and CD127 expression. We demonstrate that CD8 T-cell expansion is due to cells that divide >7 times, whereas heterologous viral infections only elicited <3 divisions among bystander memory CD8 T cells. Furthermore, we found that approximately 80% of CD8 T cells in spleen were specific for ten different LCMV-derived epitopes at the peak of primary infection. These data suggest that following a single LCMV infection, effector CD8 T cells divide ≥15 times and account for at least 80%, and possibly as much as 95%, of the CD8 T-cell pool. Moreover, the response targeted a very broad array of peptide major histocompatibility complexes (MHCs), even though we examined epitopes derived from only two of the four proteins encoded by the LCMV genome and C57BL/6 mice only have two MHC class I alleles. These data illustrate the potential enormity, specificity, and breadth of CD8 T-cell responses to viral infection and demonstrate that bystander activation does not contribute to CD8 T-cell expansion.


2010 ◽  
Vol 185 (4) ◽  
pp. 2182-2190 ◽  
Author(s):  
Scott N. Mueller ◽  
William A. Langley ◽  
Guimei Li ◽  
Adolfo García-Sastre ◽  
Richard J. Webby ◽  
...  

1998 ◽  
Vol 187 (11) ◽  
pp. 1903-1920 ◽  
Author(s):  
Daniel Binder ◽  
Maries F. van den Broek ◽  
David Kägi ◽  
Horst Bluethmann ◽  
Jörg Fehr ◽  
...  

Aplastic anemia may be associated with persistent viral infections that result from failure of the immune system to control virus. To evaluate the effects on hematopoiesis exerted by sustained viral replication in the presence of activated T cells, blood values and bone marrow (BM) function were analyzed in chronic infection with lymphocytic choriomeningitis virus (LCMV) in perforin-deficient (P0/0) mice. These mice exhibit a vigorous T cell response, but are unable to eliminate the virus. Within 14 d after infection, a progressive pancytopenia developed that eventually was lethal due to agranulocytosis and thrombocytopenia correlating with an increasing loss of morphologically differentiated, pluripotent, and committed progenitors in the BM. This hematopoietic disease caused by a noncytopathic chronic virus infection was prevented by depletion of CD8+, but not of CD4+, T cells and accelerated by increasing the frequency of LCMV-specific CD8+ T cells in T cell receptor (TCR) transgenic (tg) mice. LCMV and CD8+ T cells were found only transiently in the BM of infected wild-type mice. In contrast, increased numbers of CD8+ T cells and LCMV persisted at high levels in antigen-presenting cells of infected P0/0 and P0/0 × TCR tg mice. No cognate interaction between the TCR and hematopoietic progenitors presenting either LCMV-derived or self-antigens on the major histocompatibility complex was found, but damage to hematopoiesis was due to excessive secretion and action of tumor necrosis factor (TNF)/lymphotoxin (LT)-α and interferon (IFN)-γ produced by CD8+ T cells. This was studied in double-knockout mice that were genetically deficient in perforin and TNF receptor type 1. Compared with P0/0 mice, these mice had identical T cell compartments and T cell responses to LCMV, yet they survived LCMV infection and became life-long virus carriers. The numbers of hematopoietic precursors in the BM were increased compared with P0/0 mice after LCMV infection, although transient blood disease was still noticed. This residual disease activity was found to depend on IFN-γ–producing LCMV-specific T cells and the time point of hematopoietic recovery paralleled disappearance of these virus-specific, IFN-γ–producing CD8+ T cells. Thus, in the absence of IFN-γ and/or TNF/LT-α, exhaustion of virus-specific T cells was not hampered.


2010 ◽  
Vol 185 (3) ◽  
pp. 1730-1743 ◽  
Author(s):  
Mirjana Grujic ◽  
Christina Bartholdy ◽  
Melissa Remy ◽  
Daniel D. Pinschewer ◽  
Jan P. Christensen ◽  
...  

1992 ◽  
Vol 175 (6) ◽  
pp. 1531-1538 ◽  
Author(s):  
J T Harty ◽  
M J Bevan

Class I major histocompatibility complex (MHC)-restricted CD8+ T cells have been demonstrated to be effective mediators of both acquired and adoptive immunity to the intracellular bacterium Listeria monocytogenes. We have recently determined that L. monocytogenes-infected H-2d mice recognize a nonamer peptide, residues 91-99, of the secreted protein listeriolysin O (LLO), in a H-2Kd-restricted fashion. In this report we have generated CD8+ T cell lines with specificity for LLO 91-99 in the context of H-2Kd by in vitro stimulation with P815 (H-2d) cells transfected with LLO. These CD8+ lines have been generated from immune donors after sublethal infection with L. monocytogenes, or after in vivo immunization with syngeneic spleen cells coated with synthetic LLO 91-99 peptide. LLO-specific CD8+ T cells derived from either protocol were capable of significant protection against L. monocytogenes infection. The in vivo protection by these CD8+ T cell lines has been shown to be solely due to recognition of LLO 91-99 in the context of H-2Kd. These studies demonstrate that CD8+ T cell immunity to a single, naturally produced peptide epitope has the potential for significant protection in a bacterial infection. Thus, the allele-specific motif approach to epitope prediction has identified a naturally produced bacterial epitope with biological relevance.


Sign in / Sign up

Export Citation Format

Share Document