scholarly journals Repeated isolation of an antibiotic-dependent and temperature-sensitive mutant of Pseudomonas aeruginosa from a cystic fibrosis patient

Author(s):  
Daniel J Wolter ◽  
Alison Scott ◽  
Catherine R Armbruster ◽  
Dale Whittington ◽  
John S Edgar ◽  
...  

Abstract Background Bacteria adapt to survive and grow in different environments. Genetic mutations that promote bacterial survival under harsh conditions can also restrict growth. The causes and consequences of these adaptations have important implications for diagnosis, pathogenesis, and therapy. Objectives We describe the isolation and characterization of an antibiotic-dependent, temperature-sensitive Pseudomonas aeruginosa mutant chronically infecting the respiratory tract of a cystic fibrosis (CF) patient, underscoring the clinical challenges bacterial adaptations can present. Methods Respiratory samples collected from a CF patient during routine care were cultured for standard pathogens. P. aeruginosa isolates recovered from samples were analysed for in vitro growth characteristics, antibiotic susceptibility, clonality, and membrane phospholipid and lipid A composition. Genetic mutations were identified by whole genome sequencing. Results P. aeruginosa isolates collected over 5 years from respiratory samples of a CF patient frequently harboured a mutation in phosphatidylserine decarboxylase (psd), encoding an enzyme responsible for phospholipid synthesis. This mutant could only grow at 37°C when in the presence of supplemented magnesium, glycerol, or, surprisingly, the antibiotic sulfamethoxazole, which the source patient had repeatedly received. Of concern, this mutant was not detectable on standard selective medium at 37°C. This growth defect correlated with alterations in membrane phospholipid and lipid A content. Conclusions A P. aeruginosa mutant chronically infecting a CF patient exhibited dependence on sulphonamides and would likely evade detection using standard clinical laboratory methods. The diagnostic and therapeutic challenges presented by this mutant highlight the complex interplay between bacterial adaptation, antibiotics, and laboratory practices, during chronic bacterial infections.

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4093 ◽  
Author(s):  
Michael E. Chirgwin ◽  
Margaret R. Dedloff ◽  
Alina Maria Holban ◽  
Monica C. Gestal

Cystic fibrosis (CF) is one of the most prevalent genetic diseases and a total of 1700 different genetic mutations can cause this condition. Patients that suffer this disease have a thickening of the mucus, creating an environment that promotes bacterial infections. Pseudomonas aeruginosa is a ubiquitous bacterium, which is frequently found in the lungs of CF patients. P. aeruginosa is known for its high level of antibiotic resistance as well as its high rate of mutation that allows it to rapidly evolve and adapt to a multitude of conditions. When a CF lung is infected with P. aeruginosa, the decay of the patient is accelerated, but there is little that can be done apart from controlling the infection with antibiotics. Novel strategies to control P. aeruginosa infection are imperative, and nanotechnology provides novel approaches to drug delivery that are more efficient than classic antibiotic treatments. These drug delivery systems are offering new prospects, especially for these patients with special mucus conditions and bacterial characteristics that limit antibiotic use.


2021 ◽  
Vol 1863 (1) ◽  
pp. 183482
Author(s):  
Estelle Deschamps ◽  
Annick Schaumann ◽  
Isabelle Schmitz-Afonso ◽  
Carlos Afonso ◽  
Emmanuelle Dé ◽  
...  

2011 ◽  
Vol 56 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Samuel M. Moskowitz ◽  
Mark K. Brannon ◽  
Nandini Dasgupta ◽  
Miyuki Pier ◽  
Nicole Sgambati ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of colistin (polymyxin E) resistance in laboratory strains and clinical isolates of this organism (MICs of 8 to 64 mg/liter). To explore the role of PmrAB in high-level clinical polymyxin resistance,P. aeruginosaisolates from chronically colistin-treated cystic fibrosis patients, most with colistin MICs of >512 mg/liter, were analyzed. These cystic fibrosis isolates contained probable gain-of-functionpmrBalleles that conferred polymyxin resistance to strains with a wild-type orpmrABdeletion background. Double mutantpmrBalleles that contained mutations in both the periplasmic and dimerization-phosphotransferase domains markedly augmented polymyxin resistance. Expression of mutantpmrBalleles induced transcription from the promoter of thearnBoperon and stimulated addition of 4-amino-l-arabinose to lipid A, consistent with the known role of this lipid A modification in polymyxin resistance. For some highly polymyxin-resistant clinical isolates, repeated passage without antibiotic selection pressure resulted in loss of resistance, suggesting that secondary suppressors occur at a relatively high frequency and account for the instability of this phenotype. These results indicate thatpmrBgain-of-function mutations can contribute to high-level polymyxin resistance in clinical strains ofP. aeruginosa.


PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8439 ◽  
Author(s):  
Cristina Cigana ◽  
Laura Curcurù ◽  
Maria Rosaria Leone ◽  
Teresa Ieranò ◽  
Nicola Ivan Lorè ◽  
...  

2021 ◽  
Author(s):  
J Stuart Elborn ◽  
Patrick A Flume ◽  
Donald R Van Devanter ◽  
Claudio Procaccianti

People with cystic fibrosis (CF) are highly susceptible to bacterial infections of the airways. By adulthood, chronic Pseudomonas aeruginosa ( Pa) is the most prevalent infective organism and is difficult to eradicate owing to its adaptation to the CF lung microenvironment. Long-term suppressive treatment with inhaled antimicrobials is the standard care for reducing exacerbation frequency, improving quality of life and increasing measures of lung function. Levofloxacin (a fluoroquinolone antimicrobial) has been approved as an inhaled solution in Europe and Canada, for the treatment of adults with CF with chronic P. aeruginosa pulmonary infections. Here, we review the clinical principles relating to the use of inhaled antimicrobials and inhaled levofloxacin for the management of P. aeruginosa infections in patients with CF.


2016 ◽  
Vol 100 (5) ◽  
pp. 1047-1059 ◽  
Author(s):  
Shuvasree SenGupta ◽  
Lauren E. Hittle ◽  
Robert K. Ernst ◽  
Silvia M. Uriarte ◽  
Thomas C. Mitchell

2015 ◽  
Vol 198 (4) ◽  
pp. 731-741 ◽  
Author(s):  
Jade Bojkovic ◽  
Daryl L. Richie ◽  
David A. Six ◽  
Christopher M. Rath ◽  
William S. Sawyer ◽  
...  

ABSTRACTLipid A on the Gram-negative outer membrane (OM) is synthesized in the cytoplasm by the Lpx pathway and translocated to the OM by the Lpt pathway. SomeAcinetobacter baumanniistrains can tolerate the complete loss of lipopolysaccharide (LPS) resulting from the inactivation of early LPS pathway genes such aslpxC. Here, we characterized a mutant deleted forlptD, which encodes an OM protein that mediates the final translocation of fully synthesized LPS to the OM. Cells lackinglptDhad a growth defect comparable to that of anlpxCdeletion mutant under the growth conditions tested but were more sensitive to hydrophobic antibiotics, revealing a more significant impact on cell permeability from impaired LPS translocation than from the loss of LPS synthesis. Consistent with this, ATP leakage andN-phenyl-1-naphthylamine (NPN) fluorescence assays indicated a more severe impact oflptDdeletion than oflpxCdeletion on inner and outer membrane permeability, respectively. Targeted liquid chromatography-mass spectrometry (LCMS) analysis of LPS intermediates from UDP-3-O-R-3-hydroxylauroyl-N-acetyl-α-d-glucosamine through lipid IVAshowed that the loss of LptD caused an accumulation of lipid IVA. This suggested that pathway intermediate accumulation or mislocalization caused by the blockage of later LPS pathway steps impacts envelope integrity. Supporting this notion, chemical inhibition of lipid A precursor enzymes, including LpxC and FabB/F, in thelptDdeletion strain partially rescued growth and permeability defects.IMPORTANCENew antibiotics to treat Gram-negative bacterial infections are urgently needed. Inhibition of LPS biosynthesis is attractive because this would impact viability and cell permeability. Therefore, a better understanding of this pathway is important, especially in strains such asA. baumanniiATCC 19606, where LPS biosynthesis is not essentialin vitro. We show that ATCC 19606 also survives the loss of the final translocation of LPS into the OM (lptDdeletion). Intriguingly, this impaired cell envelope integrity more than the loss of LPS biosynthesis (lpxCdeletion), presumably due to the accumulation of toxic intermediates. Supporting this, chemical inhibition of LPS biosynthesis partially reversed this permeability defect. This extends our understanding of the LPS machinery and provides insights into potential interrelationships of the target steps along this important pathway.


2013 ◽  
Vol 195 (7) ◽  
pp. 1504-1514 ◽  
Author(s):  
M. R. Davis ◽  
A. Muszynski ◽  
I. V. Lollett ◽  
C. L. Pritchett ◽  
R. W. Carlson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document