scholarly journals PmrB Mutations Promote Polymyxin Resistance of Pseudomonas aeruginosa Isolated from Colistin-Treated Cystic Fibrosis Patients

2011 ◽  
Vol 56 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Samuel M. Moskowitz ◽  
Mark K. Brannon ◽  
Nandini Dasgupta ◽  
Miyuki Pier ◽  
Nicole Sgambati ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of colistin (polymyxin E) resistance in laboratory strains and clinical isolates of this organism (MICs of 8 to 64 mg/liter). To explore the role of PmrAB in high-level clinical polymyxin resistance,P. aeruginosaisolates from chronically colistin-treated cystic fibrosis patients, most with colistin MICs of >512 mg/liter, were analyzed. These cystic fibrosis isolates contained probable gain-of-functionpmrBalleles that conferred polymyxin resistance to strains with a wild-type orpmrABdeletion background. Double mutantpmrBalleles that contained mutations in both the periplasmic and dimerization-phosphotransferase domains markedly augmented polymyxin resistance. Expression of mutantpmrBalleles induced transcription from the promoter of thearnBoperon and stimulated addition of 4-amino-l-arabinose to lipid A, consistent with the known role of this lipid A modification in polymyxin resistance. For some highly polymyxin-resistant clinical isolates, repeated passage without antibiotic selection pressure resulted in loss of resistance, suggesting that secondary suppressors occur at a relatively high frequency and account for the instability of this phenotype. These results indicate thatpmrBgain-of-function mutations can contribute to high-level polymyxin resistance in clinical strains ofP. aeruginosa.

2011 ◽  
Vol 55 (12) ◽  
pp. 5761-5769 ◽  
Author(s):  
Amanda K. Miller ◽  
Mark K. Brannon ◽  
Laurel Stevens ◽  
Helle Krogh Johansen ◽  
Sara E. Selgrade ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of polymyxin resistance (MICs of 8 to 64 mg/liter) in laboratory and clinical strains of this organism. To explore the role of PhoPQ in high-level clinical polymyxin resistance,P. aeruginosastrains with colistin MICs > 512 mg/liter that had been isolated from cystic fibrosis patients treated with inhaled colistin (polymyxin E) were analyzed. Probable loss-of-functionphoQalleles found in these cystic fibrosis strains conferred resistance to polymyxin. Partial and complete suppressor mutations inphoPwere identified in some cystic fibrosis strains with resistance-conferringphoQmutations, suggesting that additional loci can be involved in polymyxin resistance inP. aeruginosa. Disruption of chromosomalphoQin the presence of an intactphoPallele stimulated 4-amino-l-arabinose addition to lipid A and induced transcription from the promoter of thepmrH(arnB) operon, consistent with the known role of this lipid A modification in polymyxin resistance. These results indicate thatphoQloss-of-function mutations can contribute to high-level polymyxin resistance in clinical strains ofP. aeruginosa.


2013 ◽  
Vol 57 (5) ◽  
pp. 2204-2215 ◽  
Author(s):  
Alina D. Gutu ◽  
Nicole Sgambati ◽  
Pnina Strasbourger ◽  
Mark K. Brannon ◽  
Michael A. Jacobs ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin as a consequence of mutations in the PhoPQ regulatory system, mediated by covalent lipid A modification. Transposon mutagenesis of a polymyxin-resistantphoQmutant defined 41 novel loci required for resistance, including two regulatory systems, ColRS and CprRS. Deletion of thecolRSgenes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQmutant, as did individual or tandem deletion ofcprRS. Individual deletion ofcolRorcolSin a ΔphoQmutant also suppressed 4-amino-l-arabinose addition to lipid A, consistent with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion ofcolRSorcprRSin the ΔphoQmutant or individual deletion ofcprRorcprSfailed to suppress 4-amino-l-arabinose addition to lipid A, indicating that this modification alone is not sufficient for PhoPQ-mediated polymyxin resistance inP. aeruginosa. Episomal expression ofcolRSorcprRSin tandem or ofcprRindividually complemented the Pm resistance phenotype in the ΔphoQmutant, while episomal expression ofcolR,colS, orcprSindividually did not. Highly polymyxin-resistantphoQmutants ofP. aeruginosaisolated from polymyxin-treated cystic fibrosis patients harbored mutant alleles ofcolRSandcprS; when expressed in a ΔphoQbackground, these mutant alleles enhanced polymyxin resistance. These results define ColRS and CprRS as two-component systems regulating polymyxin resistance inP. aeruginosa, indicate that addition of 4-amino-l-arabinose to lipid A is not the only PhoPQ-regulated biochemical mechanism required for resistance, and demonstrate thatcolRSandcprSmutations can contribute to high-level clinical resistance.


2013 ◽  
Vol 13 (4) ◽  
pp. 438-451 ◽  
Author(s):  
Srisuda Pannanusorn ◽  
Bernardo Ramírez-Zavala ◽  
Heinrich Lünsdorf ◽  
Birgitta Agerberth ◽  
Joachim Morschhäuser ◽  
...  

ABSTRACT In Candida parapsilosis , biofilm formation is considered to be a major virulence factor. Previously, we determined the ability of 33 clinical isolates causing bloodstream infection to form biofilms and identified three distinct groups of biofilm-forming strains (negative, low, and high). Here, we establish two different biofilm structures among strains forming large amounts of biofilm in which strains with complex spider-like structures formed robust biofilms on different surface materials with increased resistance to fluconazole. Surprisingly, the transcription factor Bcr1, required for biofilm formation in Candida albicans and C. parapsilosis , has an essential role only in strains with low capacity for biofilm formation. Although BCR1 leads to the formation of more and longer pseudohyphae, it was not required for initial adhesion and formation of mature biofilms in strains with a high level of biofilm formation. Furthermore, an additional phenotype affected by BCR1 was the switch in colony morphology from rough to crepe, but only in strains forming high levels of biofilm. All bcr1 Δ/Δ mutants showed increased proteolytic activity and increased susceptibility to the antimicrobial peptides protamine and RP-1 compared to corresponding wild-type and complemented strains. Taken together, our results demonstrate that biofilm formation in clinical isolates of C. parapsilosis is both dependent and independent of BCR1 , but even in strains which showed a BCR1 -independent biofilm phenotype, BCR1 has alternative physiological functions.


2013 ◽  
Vol 57 (6) ◽  
pp. 2694-2704 ◽  
Author(s):  
Mai Alhajlan ◽  
Moayad Alhariri ◽  
Abdelwahab Omri

ABSTRACTWe investigated the efficacy and safety of liposomal clarithromycin formulations with different surface charges against clinical isolates ofPseudomonas aeruginosafrom the lungs of cystic fibrosis (CF) patients. The liposomal clarithromycin formulations were prepared by the dehydration-rehydration method, and their sizes were measured using the dynamic-light-scattering technique. Encapsulation efficiency was determined by microbiological assay, and the stabilities of the formulations in biological fluid were evaluated for a period of 48 h. The MICs and minimum bactericidal concentrations (MBCs) of free and liposomal formulations were determined withP. aeruginosastrains isolated from CF patients. Liposomal clarithromycin activity against biofilm-formingP. aeruginosawas compared to that of free antibiotic using the Calgary Biofilm Device (CBD). The effects of subinhibitory concentrations of free and liposomal clarithromycin on bacterial virulence factors and motility on agar were investigated on clinical isolates ofP. aeruginosa. The cytotoxicities of the liposome preparations and free drug were evaluated on a pulmonary epithelial cell line (A549). The average diameter of the formulations was >222 nm, with encapsulation efficiencies ranging from 5.7% to 30.4%. The liposomes retained more than 70% of their drug content during the 48-h time period. The highly resistant strains ofP. aeruginosabecame susceptible to liposome-encapsulated clarithromycin (MIC, 256 mg/liter versus 8 mg/liter;P< 0.001). Liposomal clarithromycin reduced the bacterial growth within the biofilm by 3 to 4 log units (P< 0.001), significantly attenuated virulence factor production, and reduced bacterial twitching, swarming, and swimming motilities. The clarithromycin-entrapped liposomes were less cytotoxic than the free drug (P< 0.001). These data indicate that our novel formulations could be a useful strategy to enhance the efficacy of clarithromycin against resistantP. aeruginosastrains that commonly affect individuals with cystic fibrosis.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Hélène Puja ◽  
Arnaud Bolard ◽  
Aurélie Noguès ◽  
Patrick Plésiat ◽  
Katy Jeannot

ABSTRACT The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.


2016 ◽  
Vol 84 (10) ◽  
pp. 2995-3006 ◽  
Author(s):  
Alex H. Gifford ◽  
Sven D. Willger ◽  
Emily L. Dolben ◽  
Lisa A. Moulton ◽  
Dana B. Dorman ◽  
...  

The discovery of therapies that modulatePseudomonas aeruginosavirulence or that can eradicate chronicP. aeruginosalung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding ofP. aeruginosabehaviorin vivo. We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances ofP. aeruginosatranscripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiologyin vitroandin vivo. The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety ofP. aeruginosastrains as well as RNA serial sputum samples from fourP. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis ofP. aeruginosagrownin vitroidentified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates.P. aeruginosatranscript profiles in RNA from CF sputum indicated alginate productionin vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory.P. aeruginosagene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grownP. aeruginosashowed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CFP. aeruginosalung infections.


2016 ◽  
Vol 83 (2) ◽  
Author(s):  
Payel Chatterjee ◽  
Elizabeth Davis ◽  
Fengan Yu ◽  
Sarah James ◽  
Julia H. Wildschutte ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen which is evolving resistance to many currently used antibiotics. While much research has been devoted to the roles of pathogenic P. aeruginosa in cystic fibrosis (CF) patients, less is known of its ecological properties. P. aeruginosa dominates the lungs during chronic infection in CF patients, yet its abundance in some environments is less than that of other diverse groups of pseudomonads. Here, we sought to determine if clinical isolates of P. aeruginosa are vulnerable to environmental pseudomonads that dominate soil and water habitats in one-to-one competitions which may provide a source of inhibitory factors. We isolated a total of 330 pseudomonads from diverse habitats of soil and freshwater ecosystems and competed these strains against one another to determine their capacity for antagonistic activity. Over 900 individual inhibitory events were observed. Extending the analysis to P. aeruginosa isolates revealed that clinical isolates, including ones with increased alginate production, were susceptible to competition by multiple environmental strains. We performed transposon mutagenesis on one isolate and identified an ∼14.8-kb locus involved in antagonistic activity. Only two other environmental isolates were observed to carry the locus, suggesting the presence of additional unique compounds or interactions among other isolates involved in outcompeting P. aeruginosa. This collection of strains represents a source of compounds that are active against multiple pathogenic strains. With the evolution of resistance of P. aeruginosa to currently used antibiotics, these environmental strains provide opportunities for novel compound discovery against drug-resistant clinical strains. IMPORTANCE We demonstrate that clinical CF-derived isolates of P. aeruginosa are susceptible to competition in the presence of environmental pseudomonads. We observed that many diverse environmental strains exhibited varied antagonistic profiles against a panel of clinical P. aeruginosa isolates, suggesting the presence of distinct mechanisms of inhibition among these ecological strains. Understanding the properties of these antagonistic events offers the potential for discoveries of antimicrobial compounds or metabolic pathways important to the development of novel treatments for P. aeruginosa infections.


Author(s):  
Jad Atrissi ◽  
Annalisa Milan ◽  
Raffaela Bressan ◽  
Marianna Lucafò ◽  
Vincenzo Petix ◽  
...  

This study examines the interplay of multiple factors in determining a pattern of resistance or susceptibility to carbapenems in clinical isolates of Pseudomonas aeruginosa , focusing on the role of previously poorly understood determinants. In particular, the impact of carbapenem permeability through OprD and OpdP porins was analyzed, as well as the activity of the chromosomal carbapenemases AmpC and PoxB, going beyond the simple identification of resistance determinants encoded by each isolate.


Sign in / Sign up

Export Citation Format

Share Document